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Degenerate Virasoro modules

In Lecture 17 we discussed the fusion rules for Virasoro
modules when one of the primary fields is degenerate. This
means that the Verma module M(c, h) contains a singular
vector, which by the Kac determinant formula can happen only
when h = hr,s and c < 1.

There are different expressions for hr,s. To recall one, fix
0 < c < 1 and let h0 = 1

24(c − 1). Then if α is a real parameter,
we have

hr,s = h0 +
1
4
(rα+ + sα−)

2, α± =

√
1 − c±

√
25 − c√

24
.

Note that α+ > 0 while α− < 0.
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Notations for primary fields

We have two notations for primary fields. We will denote by
φ(α) a primary field that is not necessarily degenerate, but
which has L0-eigenvalue h = h0 +

1
4α

2.

Alternatively, we will denote by φ(r,s) a primary field with
L0-eigenvalue hr,s. In other words φ(r,s) = φ(α) with
α = rα+ + sα− with r, s positive integers.

From the Kac determinant formula, such a field φ(r,s) is
degenerate, that is, the corresponding Verma module M(c, hr,s)
contains a singular vector at level rs and the corresponding null
field, which is a descendent of φr,s may be set to zero since it
has no interactions with other fields (even φ(r,s) itself).
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Truncated fusion rule

Consider the degenerate fields with null descendent fields of
level 2. In Lecture 17 we proved

[φ(2,1)]× [φ(α)] = [φ(α−α+)] + [φ(α+α+)],

[φ(1,2)]× [φ(α)] = [φ(α−α−)] + [φ(α+α−)].

This means that the three point function

〈φ(2,1)(z)φ(α)(w1)φ(β)(w2)〉

is zero unless β = α−α+ or β = α+α+. The same conclusion
is true for any descendents of these primary fields. As a
consequence the only fields that can occur in the OPE of
φ(2,1)(z)φ(α)(w) are from the conformal families [φ(β)(w)] with
β = α± α+.
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Both fields degenerate

If φ(α) is itself a degenerate field, then the above fusion rules
may be wrong. For if φ(α) = φ(m,n) then the above rules will
state that

[φ(2,1)]× [φ(m,n)] = [φ(m+1,n)] + [φ(m−1,n)],

[φ(1,2)]× [φ(m,n)] = [φ(m,n+1)] + [φ(m,n−1)].

In particular

[φ(1,2)]× [φ(2,1)] = [φ(2,0)] + [φ(2,2)]

while
[φ(2,1)]× [φ(1,2)] = [φ(2,2)] + [φ(0,2)].
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Further truncation

To repeat, we need to reconcile:

[φ(1,2)]× [φ(2,1)] = [φ(2,0)] + [φ(2,2)]

while
[φ(2,1)]× [φ(1,2)] = [φ(2,2)] + [φ(0,2)].

But φ(2,1)(z) and φ(1,2)(w) commute (by locality) and so these
should be the same. The explanation is that in the case φ(α) is
degenerate, the fusion rule is further truncated. So actually

[φ(1,2)]× [φ(2,1)] = [φ(2,1)]× [φ(1,2)] = [φ(2,2)].
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In which c = 1
2

Now let us take c = 1
2 . This will lead to the simplest minimal

model, denoted M(4, 3). We note that

α+

α−
=

√
1 − c +

√
25 − c√

1 − c −
√

25 − c
= −

4
3
.

Consequently
α+ + α− = −(2α+ + 3α−)

and so

h(1,1) = h0+
1
4
(α++α−)

2 = h(1,1) = h0+
1
4
(2α++3α−)

2 = h(2,3).

Thus we may take φ(2,3) = φ(1,1) which we recall is the
constant field that is independent of z.
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The fusion ring

We have seen that when c = 1
2 we may identify φ(2,3) with

φ(1,1), the constant field that is the unit in the fusion ring.
Similarly

φ(2,1) = φ(1,3), φ(1,2) = φ(2,2).

With these identifications consider the span of the fields

I = φ(1,1), ε = φ(2,1), σ = φ(1,2).

We see that these fields are closed under the fusion product:

I ε σ

I I ε σ

ε ε I σ

σ σ σ I + ε
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The Kac diagram for M(4, 3)

(1, 1)
I

(2, 1)
ε

(2, 2)
σ

(1, 2) (1, 3)

(2, 3)

We may depict the model graphically in this Kac diagram. Since
φ(1,2) = φ(2,2), φ(1,3) = φ(2,1) and φ(2,3) = φ(1,1) the fields
below the dashed line are duplicates of I, ε, σ.
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Conformal weights and the Hilbert space

The conformal weights may also be made more explicit:

h(1,1) = 0, h(2,1) =
1
2
, h(1,2) =

1
16

.

We have ignored the antiholomorphic part of the CFT. As a
Vir⊕ Vir module

H = L
(1

2 , 0
)
⊗L

(1
2 , 0
)
⊕L

(1
2 ,

1
2

)
⊗L

(1
2 ,

1
2

)
⊕L

(1
2 ,

1
16

)
⊗L

(1
2 ,

1
16

)
.

This is the BPZ minimal CFT denoted M(4, 3) .



Fusion of degenerate fields The simplest minimal model M(4, 3) General minimal models The Ising Model

The setup

We now describe the general minimal model M(p, p ′) where p
and p ′ are coprime integers with p > p ′. These will be
unphysical unless p = p ′ + 1 but we will only impose this
condition at the very end.

We seek models in which every primary field is degenerate,
and where a finite number of conformal families are closed
under the fusion product. Such systems can occur for values of
c such that the slope

−
α+

α−
=

√
1 − c +

√
25 − c

−
√

1 − c +
√

25 − c

is rational.
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Rational slope

If p
p ′ is this rational slope then

c = 1 − 6
(p − p ′)2

pp ′
, hr,s =

(pr − p ′s)2 − (p − p ′)2

4pp ′
.

We consider 1 6 r < p ′ and 1 6 s < p.
Now any transformation of (r, s) that sends α to either α or −α
preserves

hr,s = h0 +
1
4
α2.

Here
α = rα+ + sα− =

α+

p
(rp − sp ′).

Thus
hr,s = hp ′−r,p−s .
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The Hilbert space

Now we may construct a theory with

H =
⊕

16r<p ′
16s<p

r/s<p ′/p

L(c, hr,s)⊗ L(c, hr,s)

and as in the M(4, 3) case it may be shown that these
conformal families are closed under fusion product.
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Constraint from Unitarity

Now we recall the theorem of Friedan, Qiu and Shenkar, that
the irreducible highest weight representation L(c, h) is unitary if
and only if

c = 1 −
6

m(m + 1)
, h = hr,s

for some m > 2 and r, s can be chosen in the range
1 6 r 6 s 6 m + 1. Thus the system M(p, p ′) is unphysical
unless p − p ′ = 1.

Therefore we take p = m + 1, p ′ = m. In this case the slope p ′/p
is nearly 1 and the condition r/s < m/(m + 1) may be replaced
by r 6 s, so

H =
⊕

16r<m
16s<m+1

r6s

L(c, hr,s)⊗ L(c, hr,s).
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Statistical Mechanics

For us statistical mechanical system Si is an ensemble
containing a large number of states s. Each state is assigned
an energy εs. At a temperature T, the probability that the
system will be found in the state s is

e−εs/T

Z(S,T)
,

where Z(S,T) is the partition function

Z(S,T) =
∑

i

e−εs/T .

We will explain one such system, the critical Ising model, and
show that it is related to M(4, 3).
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The Ising Model

The (two-dimensional ferromagnetic) Ising model takes place
on a large (N × N) 2-dimensional square grid. In a state of the
system a spin σi = ±1 is assigned to each vertex vi. The
energy of the state s is −J

∑
σiσj where the sum is over

adjacent sites vi and vj.

The two-dimensional Ising model was solved by Onsager
(1944) after significant work by Krammers and Wannier who
found a relationship between the partition functions at two
values one above and one below a critical value Tc. (See [DMS]
equation (12.7)). Among Onsager’s results was a proof that Tc

is indeed a phase transition point.
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Conformal invariance at the critical temperature

Thus system has a phase transition at the critical temperature
Tc where sinh(2J/Tc) = 1. Below the critical temperature the
spins and local energies at distant points are strongly
correlated; above the critical temperature they are not.

In Onsager’s solution, the system is equivalent to a
free-fermionic quantum mechanical system. Away from Tc, the
fermions are massive, but at T = Tc they are massless, and the
system is equivalent to a massless free-fermionic system that is
described by a conformal field theory with central charge c = 1

2 .
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Critical Exponents

Assuming that the system is at the critical temperature, and
imagining the grid fine enough that the spins σ(z) and energy
density ε(z) may be approximated by functions on the complex
plain, we have the correlations (DMS Section 12.2.2)

ε(z)ε(w) ∼
1

|z − w|2
, σ(z)σ(w) ∼

1
|z − w|1/4 + C|z − w|3/4ε(w).

The critical exponents 2 and 1
4 are predicted by the L0

eigenvalues

h(2,1) =
1
2
, h(1,2) =

1
16

.

The appearance of ε(w) in the OPE of σ(z)σ(w) is predicted by
the fusion rule [σ]2 = [I] + [ε].
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Andrews, Baxter and Forrester

Other two-dimensional solvable lattice models are associated
with other BPZ minimal models. Particularly, an infinite family of
such models (the RSOS models of Andrews, Baxter and
Forrester 1984) shows that all minimal models are associated
with statistical-mechanical systems.


	Fusion of degenerate fields
	The simplest minimal model M(4,3)
	General minimal models
	The Ising Model

