Lecture 17: Fusion for Minimal Models

Daniel Bump

January 1, 2020

Differential Operators

References: [BPZ] Sections 5 and 6 and [FMS] Chapters 6, 7 and 8 .

We will consider OPE of the primary field ϕ_{h} with other primary fields. We recall that the Virasoro generators act on a primary field ϕ_{h} of conformal weight h by

$$
\left[L_{-n}, \phi_{h}(z)\right]=(1-n) h z^{-n} \phi_{h}(z)+z^{1-n} \frac{\partial}{\partial z} \phi_{h}(z)
$$

Thus if $n>0$

$$
L_{-n} \phi_{h}(z)|0\rangle=(1-n) h z^{-n} \phi_{h}(z)|0\rangle+z^{1-n} \frac{\partial}{\partial z} \phi_{h}(z)|0\rangle .
$$

With this in mind we introduce the differential operator

$$
\mathcal{L}_{-n}=\sum_{i=1}^{N}\left\{\frac{(n-1) h}{\left(w_{i}-z\right)^{n}}-\frac{1}{\left(w_{i}-z\right)^{n-1}} \frac{\partial}{\partial w_{i}}\right\}
$$

Differential Equations

We claim that

$$
\left\langle L_{-k} \phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle=\mathcal{L}_{-k}\left\langle\phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle .
$$

For example $\mathcal{L}_{-1}=-\sum \partial_{w_{i}}$ which is equivalent to ∂_{w} by translation invariance. So

$$
\begin{gathered}
\langle 0| L_{-1} \phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)|0\rangle=\partial_{z}\langle 0| \phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)|0\rangle \\
=\mathcal{L}_{-1}\langle 0| \phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)|0\rangle,
\end{gathered}
$$

etc. More generally if $\phi_{h}^{\mathbf{k}}=L_{-k_{n}} \cdots L_{-k_{1}} \phi_{h}$ is a general descendent field we have
$\left\langle\phi_{h}^{\mathbf{k}}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle=\mathcal{L}_{-k_{n}} \cdots \mathcal{L}_{-k_{1}}\left\langle\phi_{h}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle$.

Kac Determinant Again

In the last two lectures we gave two equivalent descriptions of the values $h_{r, s}$ that appear in the Kac determinant formula

$$
\operatorname{det}_{N}(c, h)=\mathrm{constant} \times \prod_{\substack{1 \leqslant r, s \\ r s \leqslant n}}\left(h-h_{r, s}\right)^{p(n-r s)}
$$

The first was:

$$
h_{r, s}=\frac{((m+1) r-m s)^{2}-1}{4 m(m+1)}, \quad c=1-\frac{6}{m(m+1)} .
$$

The second, which looks different but is equivalent is that

$$
h_{r, s}=\frac{\left(p r-p^{\prime} s\right)^{2}}{4 p p^{\prime}}, \quad c=1-\frac{6\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

Another formula for $h_{r, s}$

Yet another equivalent form that we will need today is that

$$
\begin{gathered}
h_{r, s}=h_{0}+\frac{1}{4}\left(r \alpha_{+}+s \alpha_{-}\right)^{2}, \quad h_{0}=\frac{1}{24}(c-1) \\
\alpha_{ \pm}=\frac{\sqrt{1-c} \pm \sqrt{25-c}}{\sqrt{24}}
\end{gathered}
$$

With this in mind, we will use the following notation for a possibly nondegenerate primary field $\phi_{(\alpha)}$ where α is a real number chosen so that the L_{0} eigenvalue of $\phi_{(\alpha)}$ is $h_{0}+\frac{1}{4} \alpha^{2}$.

Degenerate primary fields $h_{r, s}$

Suppose with $h=h_{r, s}$ for some r, s. Suppose we have a field $\phi(z)$ such that the corresponding vector

$$
|h\rangle=\lim _{z \rightarrow 0} \phi(z)
$$

has $L_{0}|h\rangle=h|h\rangle$. We will denote this field $\phi_{r, s}(z)$. (We are suppressing \bar{z} for now.)

From the Kac determinant formula, we know that there is a singular vector $\left|\chi_{\text {null }}\right\rangle$ of level $h-r s$. It is orthogonal to the entire ambient Hilbert space.

The null vector is declared zero

We may set the null vector $\left|\chi_{\text {null }}\right\rangle$ to zero.
The physical justification for this is that in any $\left|\chi_{\text {null }}\right\rangle$ is orthogonal to the entire Hilbert space \mathcal{H} and moreover is not detected by any correlation functions. That is,

$$
\left\langle\chi_{\text {null }}(w) \phi_{1}\left(z_{1}\right) \cdots \phi_{N}\left(z_{N}\right)\right\rangle:=\langle 0| \chi(w) \phi_{1}\left(z_{1}\right) \cdots \phi_{N}\left(z_{N}\right)|0\rangle=0 .
$$

These correlation functions are the physically measurable quantities associated with the theory, so the field $\chi_{\text {null }}(w)$ does not interact and may be disregarded.

With $\chi_{\text {null }}$ set to zero we will call the corresponding primary field $\phi_{r, s}$ degenerate.

Null vectors of level 2

For example consider the special case where the null vector is of level 2, that is, $h_{r, s}=h_{1,2}$ or $h_{2,1}$.

The Kac determinant

$$
\operatorname{det}_{2}(c, h)=32\left(h-h_{1,1}\right)\left(h-h_{2,1}\right)\left(h-h_{1,2}\right)
$$

where $h_{1,1}=0$ and

$$
\begin{aligned}
& h_{1,2}=\frac{1}{16}(5-c-\sqrt{(1-c)(25-c)}) \\
& h_{2,1}=\frac{1}{16}(5-c+\sqrt{(1-c)(25-c)}) .
\end{aligned}
$$

Hence a necessary and sufficient condition for a null vector of level 2 is that $h=h_{1,2}$ or $h_{2,1}$.

Null vectors of level 2 (continued)

Assuming $h=h_{1,2}$ or $h=h_{2,1}$

$$
\left|\chi_{\text {null }}\right\rangle=\left[L_{-2}+\frac{3}{2(2 h+1)} L_{-1}^{2}\right]|h\rangle,
$$

for we compute $L_{1}|\chi\rangle=L_{2}|\chi\rangle=0$. (See [DMS] Section 7.3.1 and [BPZ] Section 5.) So as we have explained this vector may we set to zero.

Differential Equation

Setting the null vector to zero implies a differential equation for the correlation functions (vacuum expectation values)

$$
\left(\mathcal{L}_{-2}+\frac{3}{2(2 h+1)} \mathcal{L}_{-1}^{2}\right)\left\langle\phi_{r, s}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle=0
$$

or more explicitly

$$
\begin{gathered}
\left\{\sum_{i=1} \frac{1}{\left(z-w_{i}\right)} \frac{\partial}{\partial w_{i}}+\frac{h_{i}}{\left(z-w_{i}\right)^{2}}-\frac{3}{2(2 h+1)} \frac{\partial^{2}}{\partial z^{2}}\right\} \\
\left\langle\phi_{r, s}(z) \phi_{h_{1}}\left(w_{1}\right) \cdots \phi_{h_{N}}\left(w_{N}\right)\right\rangle=0
\end{gathered}
$$

We have used the fact that $\mathcal{L}_{-1}=-\partial_{z}$ is equivalent to $\sum \partial_{w_{i}}$ due to translation invariance.

Three point function

Indeed conformal invariance shows that with $\phi_{r, s}=\phi_{2,1}$ or $\phi_{1,2}$ and $h=h_{2,1}$ or $h_{1,2}$ we have

$$
\begin{gathered}
\left\langle\phi_{r, s}(z) \phi_{h_{1}}\left(w_{1}\right) \phi_{h_{2}}\left(w_{2}\right)\right\rangle \\
=\frac{G}{\left(z-w_{1}\right)^{h_{2}-h-h_{1}}\left(w_{1}-w_{2}\right)^{h-h_{1}-h_{2}}\left(z-w_{2}\right)^{h_{1}-h-h_{2}}}
\end{gathered}
$$

for some constant G independent of z, w_{1}, w_{2}. This is because the global conformal group $\operatorname{SL}(2, \mathbb{C})$ acts 3 -transitively on the Riemann sphere so a conformally covariant function with three singularities has no degrees of freedom and is determined up to scalar by the conformal dimensions at z, w_{1}, w_{2}.

Information from the three point function

The differential equation gives no new information when applied to the two-point functions but applied to the three point functions this differential equation tells us something new: it gives a constraint on h_{1} and h_{2} such that $\left\langle\phi_{r, s}(z) \phi_{h_{1}}\left(w_{1}\right) \phi_{h_{2}}\left(w_{2}\right)\right\rangle$ is nonzero. With $\left\langle\phi_{r, s}(z) \phi_{h_{1}}\left(w_{1}\right) \phi_{h_{2}}\left(w_{2}\right)\right\rangle$ as above the differential equation gives an identity

$$
2(2 h+1)\left(h+2 h_{2}-h_{1}\right)=3\left(h-h_{1}+h_{2}\right)\left(h-h_{1}+h_{2}+1\right) .
$$

Deduction

This constraint

$$
2(2 h+1)\left(h+2 h_{2}-h_{1}\right)=3\left(h-h_{1}+h_{2}\right)\left(h-h_{1}+h_{2}+1\right) .
$$

can be formulated more elegantly using the notation $\phi_{(\alpha)}$ for the primary fields. We recall that $\phi_{(\alpha)}$ has $h=h_{0}+\frac{1}{4} \alpha^{2}$ where $h_{0}=\frac{1}{24}(c-1)$. We learn that $\left\langle\phi_{r, s}(z) \phi_{(\alpha)}\left(w_{1}\right) \phi_{(\beta)}\left(w_{2}\right)\right\rangle$ can be nonzero only if $\beta=\alpha \pm \alpha_{+}$if $h=h_{2,1}$ or $\beta=\alpha \pm \alpha_{-}$if $h=h_{1,2}$ where we recall

$$
\alpha_{ \pm}=\frac{\sqrt{1-c} \pm \sqrt{25-c}}{\sqrt{24}} .
$$

The conclusion remains true if $\phi_{(\alpha)}$ or $\phi_{(\beta)}$ is replaced by a descendent field, so it is a statement about any fields in the conformal families $\left[\phi_{(\alpha)}\right]$ and $\left[\phi_{(\beta)}\right]$.

Fusion

It may be deduced by letting $w_{2} \longrightarrow w_{1}$ that $\left[\phi_{\left(\alpha-\alpha_{+}\right)}\right]$and $\left[\phi_{\left(\alpha+\alpha_{+}\right)}\right]$are the only conformal families that appear in the OPE of $\phi_{(2,1)}(z) \phi_{(\alpha)}(w)$. We use the notation

$$
\left[\phi_{(2,1)}\right] \times\left[\phi_{(\alpha)}\right]=\left[\phi_{\left(\alpha-\alpha_{+}\right)}\right]+\left[\phi_{\left(\alpha+\alpha_{+}\right)}\right],
$$

to represent this fact. Similarly

$$
\left[\phi_{(1,2)}\right] \times\left[\phi_{(\alpha)}\right]=\left[\phi_{\left(\alpha-\alpha_{-}\right)}\right]+\left[\phi_{\left(\alpha_{+} \alpha_{-}\right)}\right] .
$$

We wish to think of the conformal families as being the basis of a ring, with \times being the multiplication. This operation is called fusion.

Fusion coefficients

To reiterate, let $\left[\phi_{a}\right]$ and $\left[\phi_{b}\right]$ be two conformal families, consisting of all descendents of primary fields ϕ_{a} and ϕ_{b}. We write:

$$
\left[\phi_{a}\right] \times\left[\phi_{b}\right]=\sum_{c} \mathcal{N}_{a b}^{c}\left[\phi_{c}\right]
$$

to indicate that $\left[\phi_{c}\right]$ are the conformal families that can appear in the OPE of $\phi_{a}(z) \phi_{b}(w)$ (where we may replace the primary fields ϕ_{a} and ϕ_{b} by descendent fields and the conclusion remains true).

The integers $\mathcal{N}_{a b}^{c} \geqslant 0$ are multiplicities taking into account that ϕ_{c} might occur in more than one essentially different way. (For the problem at hand, the $\mathcal{N}_{a b}^{c}$ are all 0 or 1.)

The Fusion Ring

The fusion operation

$$
\left[\phi_{a}\right] \times\left[\phi_{b}\right]=\sum_{c} \mathcal{N}_{a b}^{c}\left[\phi_{c}\right]
$$

makes the conformal families into an associative ring. Its identity element is $\phi_{(1,1)}$. To see this note that since $h_{1,1}=0$ we must have

$$
\frac{\partial}{\partial z}\left\langle\phi_{(1,1)}(z) X\right\rangle=0 .
$$

Since $\phi_{(1,1)}$ is holomorphic it follows that it is constant. We have

$$
\phi_{(1,1)} \times \phi_{(\alpha)}=\phi_{(\alpha)}
$$

so indeed $\phi_{(1,1)}$ is the identity element in the fusion ring.

The fusion rule for degenerate fields

The general fusion rule for degenerate fields is

$$
\left[\phi_{(r, s)}\right] \times\left[\phi_{(\alpha)}\right]=\sum_{\substack{k=1-r \\ k \equiv r+1 \bmod 2}}^{\sum_{\substack{l=1-s \\ l=r-1}}^{l \equiv s+1 \bmod 2}<}\left[\phi_{\left(\alpha+k \alpha_{+}+l \alpha_{-}\right)}^{l=r-1}\right]
$$

BPZ minimal models

From this, we may imagine the BPZ minimal models that we will look at in our next lecture: we wish to construct theories in which all primary fields are degenerate (to limit the complexity of the OPE) and in which there are only a finite number of primary fields.

This can be accomplished if

$$
c=1-\frac{6\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

with p, p^{\prime} coprime integers and

$$
\mathcal{H}=\bigoplus_{\substack{1 \leqslant r<p^{\prime} \\ 1 \leqslant s<p}} M\left(c, h_{r, s}\right) \otimes M\left(c, h_{r, s}\right)
$$

as a Vir \otimes Vir module.

