Lecture 16: Minimal Models, I

Daniel Bump

January 1, 2020

Review: Kac determinant

References: Kac-Raina, Chapters 3, 8 and 12, and [DMS] Chapters 6,7,8, and Belavin-Polyakov-Zamolodchikov, Infinite conformal symmetry in two-dimensional QFT (1984) [BPZ].

Let $M(c, h)$ be the Virasoro Verma module with highest weight element $|h\rangle$. Since L_{0} is self-adjoint, its eigenspaces are orthogonal. The vectors of eigenvalue $h+N$ comprise the level N eigenspace. Let $\mathbf{k}=\left(k_{1}, \cdots, k_{n}\right)$ be a partition of N , $k_{1} \geqslant k_{2} \geqslant \cdots$. Denote $|\mathbf{k}\rangle=L_{-k_{n}} \cdots L_{-k_{1}}|h\rangle$. The Kac determinant $\operatorname{det}_{N}(c, h)$ is the $p(N) \times p(N)$ matrix of inner products

$$
\begin{aligned}
& \left(L_{-k_{n}} \cdots L_{-k_{1}}|h\rangle, L_{-l_{m}} \cdots L_{-l_{1}}|h\rangle\right)= \\
& \langle h| L_{k_{1}} \cdots L_{k_{n}} L_{-l_{m}} \cdots L_{-k_{1}}|h\rangle=\langle\mathbf{k} \mid \mathbf{I}\rangle .
\end{aligned}
$$

Review: Kac determinant

We will show that if $\operatorname{det}_{N}(c, h)=0$, and if $\operatorname{det}_{N-1}(c, h) \neq 0$, then $M(c, h)$ has a singular vector of level N. Indeed, there is a vector v of level N that is orthogonal to all vectors of level N, hence to all of $M(c, h)$. Then if $k>0$ the vector $L_{k} v$ is of lower level and is also orthogonal to $M(c, h)$, hence $L_{k} v=0$ so v is singular.

Thus we may use the Kac determinant formula

$$
\operatorname{det}_{N}(c, h)=K \prod_{\substack{r, s \geqslant 0 \\ 1 \leqslant r s \leqslant n}}\left(h-h_{r, s}\right)^{p(n-r s)}
$$

to detect singular vectors. We will define $h_{r, s}$ later. The constant K is nonnegative. We see that if $h=h_{r, s}$ for some r, s, then $M(c, h)$ has a singular vector of level $r s$.

The singular values $h_{r, s}$

Last time we defined

$$
h_{r, s}=\frac{[(m+1) r-m s]^{2}-1}{4 m(m+1)}
$$

where m is chosen so that

$$
q=1-\frac{6}{m(m+2)} .
$$

In this connection, we mentioned the theorem of
Qiu-Friedan-Shenkar that if m is an integer and $h=h_{r, s}$ then $L(q, h)$ is unitary.

An alternative formula for $h_{r, s}$

Now we are interested in more general values of q where m is not an integer. Then other formulas for $h_{r, s}$ may be more convenient. For example, there is the following formula when

$$
q=1-\frac{6\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

Then

$$
h_{r, s}=\frac{\left(p r-p^{\prime} s\right)^{2}-\left(p-p^{\prime}\right)}{4 p p^{\prime}}
$$

Proof of the alternative formula for $h_{r, s}$

To check this, we must show that if p, p^{\prime} and m satisfy $0<p<p^{\prime}, 0<m$ and

$$
\frac{p p^{\prime}}{\left(p-p^{\prime}\right)^{2}}=m(m+1)
$$

then

$$
\frac{[(m+1) r-m s]^{2}-1}{4 m(m+1)}=\frac{\left(p r-p^{\prime} s\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}
$$

To see this, note that both

$$
\frac{p p^{\prime}}{\left(p-p^{\prime}\right)^{2}}, \quad \frac{\left(p r-p^{\prime} s\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}
$$

are invariant under scaling $\left(p, p^{\prime}\right) \longrightarrow\left(\lambda p, \lambda p^{\prime}\right)$ so we may arrange that $p-p^{\prime}=1$ and then we must have $p=m+1$, $p^{\prime}=m$.

Consequences of the alternative formula for $h_{r, s}$

Now assume that p, p^{\prime} are coprime integers and $p>p^{\prime}$. We have checked that if

$$
c=1-6 \frac{\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

where p, p^{\prime} are coprime integers and $p>p^{\prime}$ then

$$
h_{r, s}=\frac{\left(p r-p^{\prime} s\right)^{2}-\left(p-p^{\prime}\right)}{4 p p^{\prime}}
$$

We now assume that p, p^{\prime} are integers. We note the symmetry

$$
h_{r, s}=h_{p^{\prime}-r, p-s} .
$$

Consequences, continued

From the Kac determinant formula, the Verma module $M\left(c, h_{r, s}\right)$ has a singular vector of level $r s$. This generates a highest weight representation that is a quotient of $M\left(c, h_{r, s}+r s\right)$. Similarly since $h_{r, s}=h_{p^{\prime}-r, p-s}$ it has a singular vector of level $\left(p^{\prime}-r\right)(p-s)$, generating a quotient of
$M\left(c, h_{r, s}+\left(p^{\prime}-r\right)(p-s)\right)$.
Now we have the symmetry properties

$$
\begin{gathered}
h_{r, s}+r s=h_{p^{\prime}+r, p-s}=h_{p^{\prime}-r, p+s} \\
h_{r s}+\left(p^{\prime}-r\right)(p-s)=h_{r, 2 p-s}=h_{2 p^{\prime}-r, s}
\end{gathered}
$$

so these Verma modules $M\left(c, h_{r, s}+r s\right)$ and $M\left(c, h_{r, s}+\left(p^{\prime}-r\right)(p-s)\right)$ are themselves singular.

The lattice of submodules

Assuming still that p, p^{\prime} are coprime integers and $p>p^{\prime}$,

$$
c=1-6 \frac{\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}
$$

we get a lattice of subgroups of $M\left(c, h_{r, s}\right)$:

Virasoro modules in a CFT

We turn now to a conformal field theory.

The vacuum $|0\rangle$ is invariant under the subalgebra $\mathfrak{s l}(2, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})$ which contains the Virasoro generators L_{-1}, L_{0}, L_{1} and $\bar{L}_{-1}, \bar{L}_{0}, \bar{L}_{1}$ and. Therfore the vacuum is annihilated by L_{n} and \bar{L}_{n} when $n \geqslant-1$. We expect that \mathcal{H} will be a direct sum of modules of the form $L(c, h) \otimes L(c, \bar{h})$.

The central charge c will be the same for all of these, but we may have various h, \bar{h}. So let us write

$$
\mathcal{H}=\bigoplus_{a} L\left(c, h_{a}\right) \otimes L\left(c, \bar{h}_{a}\right)
$$

summing over primary fields Φ_{a} with conformal weights h_{a}, \bar{h}_{a}.

Operator Product Expansion

Our goal for this lecture and the next is to determine the fields that can occur in the OPE. We may write

$$
\begin{gathered}
\Phi_{a}(z, \bar{z}) \Phi(w, \bar{w})= \\
\sum_{c} \sum_{\mathbf{k}, \overline{\mathbf{k}}} C_{a b}^{c, \mathbf{k}, \overline{\mathbf{k}}}(z-w)^{h_{c}-h_{a}-h_{b}+\sum k_{i}}(\bar{z}-\bar{w})^{\bar{h}_{c}-\bar{h}_{a}-\bar{h}_{b}+\sum \bar{k}_{i}} \Psi_{c}^{\mathbf{k}, \overline{\mathbf{k}}}(w, \bar{w})
\end{gathered}
$$

where $\Psi_{c}^{\mathbf{k}, \overline{\mathbf{k}}}$ are descendent fields $L_{-k_{n}} \cdots L_{-k_{1}} \bar{L}_{-\bar{k}_{m}} \cdots \bar{L}_{-\bar{k}_{1}} \Phi_{c}$. The question is when $C_{a b}^{c, \mathbf{k}, \overline{\mathbf{k}}}$ is nonzero. Less precisely

$$
\Psi_{a}(z) \Psi_{b}(w)=\sum_{c} C_{a b}^{c}(z-w) \Psi_{c}(w)
$$

Fusion

Each component $L\left(c, h_{a}\right) \otimes L\left(c, \bar{h}_{a}\right)$ contains a unique primary field Φ_{a} and the remaining fields, called descendents of Φ_{a} are those that may be obtained from Φ_{a} by applying the operators L_{-k} and \bar{L}_{-k}. The fields in $L\left(c, h_{a}\right) \otimes L\left(c, \bar{h}_{a}\right)$ are said to lie in the same conformal family, denoted $\left\{\Phi_{a}\right\}$.

Given fields Ψ_{a} and Ψ_{b} from the conformal families $\left\{\Phi_{a}\right\}$ and $\left\{\Phi_{b}\right\}$, the operator product expansion will have the form

$$
\Psi_{a}(z) \Psi_{b}(w)=\sum_{c} C_{a b}^{c}(z-w) \Psi_{c}(w)
$$

Informally write

$$
\left\{\Phi_{a}\right\} \times\left\{\Phi_{b}\right\}=\sum_{c} \mathcal{N}_{a b}^{c}\left\{\Phi_{c}\right\},
$$

Fusion, continued

In the "fusion expansion"

$$
\left\{\Phi_{a}\right\} \times\left\{\Phi_{b}\right\}=\sum_{c} \mathcal{N}_{a b}^{c}\left\{\Phi_{c}\right\},
$$

$\mathcal{N}_{a b}^{c}$ is the number of essentially different ways the conformal family $\left\{\Phi_{c}\right\}$ appears in the OPE of $\Phi_{a}(z) \Phi_{b}(w)$. For the problem at hand these multiplicities will all be 0 or 1 . The complex span of the $\left\{\Phi_{a}\right\}$ is a ring, called the fusion ring and the multiplication x is called fusion.

Minimal models

It is a special case when there are only a finite number of conformal families and the sum

$$
\mathcal{H}=\bigoplus_{a} L\left(c, h_{a}\right) \otimes L\left(c, \bar{h}_{a}\right)
$$

is finite. What [BPZ] proved is that if $c=1-\frac{6\left(p-p^{\prime}\right)}{p p^{\prime}}$ where p, p^{\prime} are coprime integers with $p>p^{\prime}$ then we may take

$$
\mathcal{H}=\bigoplus_{\substack{1 \leqslant r<p^{\prime} \\ 1 \leqslant s<p}} L\left(c, h_{r, s}\right) \otimes L\left(c, \bar{h}_{r, s}\right) .
$$

The resulting minimal model will be denote $\mathcal{M}\left(p, p^{\prime}\right)$.

Statistical Mechanics

For the minimal models, what we need is for

$$
\frac{\sqrt{c-1}-\sqrt{c-25}}{\sqrt{c-1}+\sqrt{c-25}}
$$

to be rational.

In a second 1984 paper [BPZ] showed that certain models from statistical physics such as the two-dimensional Ising model at the critical temperature are described by models of this type.
For the Ising model the relevant CFT is $\mathcal{M}(4,3)$, and there are other similar examples.

Highest weight vectors

Let $\Phi(z, \bar{z})$ be a primary field of conformal dimensional h, \bar{h} in a conformal field theory. This generates a module for Vir \oplus Vir but for the time being we will discuss only the holomorphic first component and write $\Phi=\Phi(z)$. The primary field satisfies

$$
\left[L_{n}, \Phi(z)\right]=z^{n+1} \partial_{z} \Phi(z)+h(n+1) z^{n} \Phi(z)
$$

for all n. We consider the state $|h\rangle=\Phi(z)|0\rangle$ where $|0\rangle$ is the vacuum in \mathcal{H}. Since the vacuum is invariant under the global conformal group $\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$, which is generated by L_{-1}, L_{0}, L_{1} and $\bar{L}_{-1}, \bar{L}_{0}, \bar{L}_{1}$ we have $L_{n}|0\rangle=\bar{L}_{n}|0\rangle=0$ if $n \geqslant-1$. It follows that

$$
L_{0} \Phi(z)|0\rangle=\left[L_{0}, \Phi(z)\right]=z \partial_{z} \Phi(z)|0\rangle+h \Phi(z)|0\rangle
$$

and taking $z=0$ we get $L_{0}|h\rangle=h|0\rangle$. Similarly if $n>0$ we have $L_{n}|h\rangle=0$ so $|h\rangle$ generates a highest weight module.

Highest weight vectors

The basic idea is that if the Verma module $M(c, h)$ has singular vectors then terms can be omitted from the fusion expansion

$$
\left\{\Phi_{a}\right\} \times\left\{\Phi_{b}\right\}=\sum_{c} \mathcal{N}_{a b}^{c}\left\{\Phi_{c}\right\}
$$

that would ordinarily be there. making it easier to keep the number of primary fields in the decomposition

$$
\mathcal{H}=\bigoplus_{a} L\left(c, h_{a}\right) \otimes L\left(c, \bar{h}_{a}\right)
$$

finite.

