Lecture 15: Virasoro Discrete Series

Daniel Bump

January 1, 2020

Primitive Vectors

Let us consider the general cas of a Lie algebra

$$
\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}
$$

with triangular decomposition, let V be a highest weight module. Reference: Kac, Infinite-dimensional Lie algebras, Chapter 9. Let V be a \mathfrak{g}-module with a highest weight decomposition. A vector $v \in V$ is called primitive if there exists a submodule U such that $v \notin U$ but $\mathfrak{n}_{+} v \subseteq U$. An important special case is that $U=0$. Then $v \neq 0$ but $\mathfrak{n}_{+} v=0$; in this case v generates a highest weight representation with highest weight λ. If this is true, we say that v is a singular vector.

Example: $\mathfrak{s l}(2, \mathbb{C})$

A necessary and sufficient condition for a module in Category \mathcal{O} to be irreducible is that it has a unique (up to scalar) primitive vector. This vector will be a highest weight vector. If $v \in V_{\lambda}$ then $V \cong L(\lambda)$.

Let us illustrate these examples with the example $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ spanned by

$$
\begin{gathered}
H=\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
{[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H .}
\end{gathered}
$$

Let λ be the linear functional on $\mathfrak{h}=\mathbb{C} H$ defined by $\lambda(H)=k$, where $k \in \mathbb{C}$. Let v_{λ} be the highest weight vector, so $H v_{\lambda}=k v_{\lambda}$ and $E v_{\lambda}=0$.

Example, continued

Because the map $U\left(\mathfrak{n}_{-}\right)=\mathbb{C}[F]$ to $M(\lambda)$ sending ξ to ξv_{λ} is an isomorphism, a basis of $M(\lambda)$ consists of $F^{m} v$ with
$m=0,1,2, \cdots$. An induction using $[H, F]=-2 F$ shows that $H \cdot F^{m} v_{\lambda}=(k-2 m) v_{\lambda}$. Then another induction using $[E, F]=H$ shows that $E F^{m} v_{\lambda}=m(k-m+1) v_{\lambda}$. Thus assuming this for some m,

$$
E F^{m+1} v_{\lambda}=(E F-F E) F^{m} v_{\lambda}+F E F^{m} v_{\lambda}=H F^{m} v_{\lambda}+F E F^{m} v_{\lambda}
$$

and by induction this equals

$$
(k-2 m) v_{\lambda}+m(k-m+1) v_{\lambda}=(m+1)(k-m) v_{\lambda} .
$$

This completes the induction.

Example, concluded

Since $E F^{m} v_{\lambda}=m(k-m+1) v_{\lambda}$, we see that $F^{m} v_{\lambda}$ is a singular vector if $m=k+1$. This means that k is a nonnegative integer, or equivalently, λ is a dominant weight. The singular vector $F^{m} v_{\lambda}$ is a highest weight vector for a submodule isomorphic to $M(\lambda-(k+1) \alpha)$. Then $L(\lambda)=M(\lambda) / M(\lambda-(k+1) \alpha)$ is finite-dimensional.

If we regard \mathfrak{g} as the complexification of $\mathfrak{s u}(2)$ then $L(\lambda)$ is unitary as an $\mathfrak{s u}(2)$-module in this case where λ is dominant. For general λ a highest weight module for λ will contain vectors of negative norm ("ghosts") but not for $L(\lambda)$ when λ is dominant.

The inner product for Vir

Let V be a highest weight representation of Vir with highest weight (c, h), meaning that $C v=c v$ for all $v \in V$, and $L_{0} v_{\lambda}=h v_{\lambda}$ if v_{λ} is a highest weight vector. We will fix a highest weight vector and denote $v_{\lambda}=|h\rangle$.

In a unitary representation that comes from a conformal field theory, L_{n} must be the adjoint of L_{-n}. See Ginsparg, Applied CFT (arXiv:hep-th/9108028) Section 3.4 for justification of this. It is proved in Kac and Raina, Proposition 2.2 that if V is a highest weight representation of Vir that there is a unique Hermitian inner product on V in which L_{n} and L_{-n} are adjoints. However this inner product may not be positive definite.

Solvable lattice models

Determining whether this inner product on the irreducible highest weight module $L(c, h)$ is positive definite is a problem solved by the Kac determinant, which we now describe, following [FMS] Section 7.2.1 and Kac-Raina, Chapters 8 and 12.

When $c<1$ the representations $L(c, h)$ when $M(c, h)$ contains a singular vector are used in constructing the two-dimensional minimal models of [BPZ], which important in statistical mechanics since they often model two-dimensional solvable lattice models such as the Ising model at the critical temperature.

The Verma module

The Verma module $M(c, h)$ is graded as follows. A basis consists of vectors

$$
|\mathbf{k}\rangle=L_{-k_{1}} \cdots L_{-k_{m}}|h\rangle, \quad 1 \leqslant k_{1} \leqslant \cdots \leqslant k_{m} .
$$

We call $\sum k_{i}=N$ the level of the vector. Let $\mathbf{k}=\left(k_{1}, \cdots, k_{n}\right)$ be the corresponding partition (written backwards since traditionally partitions are written in descending order). If \mathbf{k} and l are two such partitions of the same level l, then the inner product $\langle\mathbf{l} \mid \mathbf{k}\rangle$ equals

$$
\langle h| L_{k_{m}} \cdots L_{k_{1}} L_{-l_{1}} \cdots L_{-k_{n}}|h\rangle .
$$

(If \mathbf{l} and \mathbf{k} have different level then $|\mathbf{I}\rangle$ and $|\mathbf{k}\rangle$ are orthogonal.)

Inner products

The number of partitions of level N is denoted $p(N)$. The $p(N) \times p(N)$ matrix of inner products $\langle\mathbf{l} \mid \mathbf{k}\rangle$ is denoted $\operatorname{det}_{N}(c, h)$.

Let us compute some inner products. To compute $\langle h| L_{1} L_{-1}|h\rangle$ we use the identity $\left[L_{1}, L_{-1}\right]=2 L_{0}$ and we see that $\langle h| L_{1} L_{-1}|h\rangle=2 h\langle h \mid h\rangle=2 h$. Again, let us compute $\langle h| L_{1}^{2} L_{-2}|h\rangle$. For this we use $L_{1} L_{-2}=L_{-2} L_{1}+3 L_{-1}$. Remembering that $L_{1}|h\rangle=0$ we get

$$
\langle h| L_{1}^{2} L_{-2}|h\rangle=\langle h| 3 L_{-1}|h\rangle=6 h .
$$

Again, using the cocycle $\frac{k^{3}-k}{12}=\frac{1}{2}$ when $k=2$,

$$
\langle h| L_{2} L_{-2}|h\rangle=\langle h| 4 L_{0}+\frac{C}{2}|h\rangle=4 h+\frac{c}{2}, \quad \text { etc. }
$$

Determinants

The determinant of the $p(N) \times p(N)$ matrix of inner products is denoted $\operatorname{det}_{N}(c, h)$ and we compute

$$
\operatorname{det}_{1}(c, h)=2 h,
$$

and

$$
\begin{aligned}
& \operatorname{det}_{2}(c, h)=\operatorname{det}\left(\begin{array}{cc}
\langle h| L_{2} L_{-2}|h\rangle & \langle h| L_{2} L_{-1} L_{-1}|h\rangle \\
\langle h| L_{2} L_{-1} L_{-1}|h\rangle & \langle h| L_{1} L_{1} L_{-1} L_{-1}|h\rangle
\end{array}\right)= \\
& \quad=\left|\begin{array}{cc}
4 h+\frac{c}{2} & 6 h \\
6 h & 8 h^{2}+4 h
\end{array}\right|=2 h\left(16 h^{2}+2 h c-10 h+c\right) .
\end{aligned}
$$

These determinants must be non-negative if the module $L(c, h)$ is unitary. (We allow the inner product to be semidefinite but not indefinite.) Thus we need $h \geqslant 0$ and

$$
0 \leqslant c<1-(4 h-1)^{2} /(2 h+1)
$$

The numbers $h_{r, s}$

As another application, we may now see when $M(c, h)$ has a singular vector of level 2. From the above, we must have $0=\operatorname{det}_{2}(c, h)$ and so $16 h^{2}+(2 c-10) h+c$. Solving the quadratic equation for h we must have

$$
h==\frac{1}{16}(c-5 \pm \sqrt{(c-1)(c-25)}) .
$$

To proceed further the higher Kac determinants are needed. A formula for these was found by Kac (1978). Let

$$
\begin{gathered}
h_{r, s}(c)=\frac{1}{48}\left[(13-c)\left(r^{2}+s^{2}\right)+\sqrt{(c-1)(c-25)}\left(r^{2}-s^{2}\right)\right. \\
-24 r s-2+2 c] .
\end{gathered}
$$

The Kac Determinant Formula

The Kac determinant formula is

$$
\operatorname{det}_{n}(c, h)=K \prod_{\substack{r, s \in \mathbb{N} \\ 1 \leqslant r s \leqslant n}}\left(h-h_{r, s}(c)\right)^{p(n-r s)}
$$

where K is an explicit positive constant. The proof is somewhat difficult and may be found in Kac-Raina Chapters 8 and 12. A first consequence is that the Verma module $M(c, h)$ is irreducible and unitary if $c>1$ and $h>0$, the key step being the positivity of all the Kac determinants. If $c=1$ then $M(c, h)$ is unitary unless $4 h$ is a square in \mathbb{Z}, and it is always (weakly) unitary. The case $c=1$ is relevant to some interesting conformal field theories, including the free boson. See Ginsparg Figure 14 for a survey of CFT when $c=1$. If $c=0$ only the trival representation $L(0,0)$ is unitary.

Unitary Representations

It is better to revise the notation and write $h_{r, s}$ as a function of a parameter m chosen so that

$$
c(m)=1-\frac{6}{m(m+1)}
$$

and then

$$
h_{r, s}(m)=\frac{((m+1) r-m s)^{2}-1}{4 m(m+1)} .
$$

Theorem (Friedan, Shenkar, Qiu)

The module $L(c, h)$ is unitary if and only if $c=c(m)$ with m an integer $\geqslant 2$ and $h=h_{r, s}(m)$ for some r, s with $1 \leqslant s \leqslant r<m$.

Proofs of this deep result were also given by Kac-Wakimoto (independently) and Langlands (later). The Kac-Wakimoto proof is described in Kac-Raina Chapter 12.

