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Primitive Vectors

Let us consider the general cas of a Lie algebra

g = n− ⊕ h⊕ n+.

with triangular decomposition, let V be a highest weight
module. Reference: Kac, Infinite-dimensional Lie algebras,
Chapter 9. Let V be a g-module with a highest weight
decomposition. A vector v ∈ V is called primitive if there exists
a submodule U such that v /∈ U but n+v ⊆ U. An important
special case is that U = 0. Then v 6= 0 but n+v = 0; in this case
v generates a highest weight representation with highest weight
λ. If this is true, we say that v is a singular vector .
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Example: sl(2,C)

A necessary and sufficient condition for a module in Category
O to be irreducible is that it has a unique (up to scalar) primitive
vector. This vector will be a highest weight vector. If v ∈ Vλ then
V ∼= L(λ).

Let us illustrate these examples with the example g = sl(2,C)
spanned by

H =

(
1

−1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

[H,E] = 2E, [H,F] = −2F, [E,F] = H.

Let λ be the linear functional on h = CH defined by λ(H) = k,
where k ∈ C. Let vλ be the highest weight vector, so Hvλ = kvλ
and Evλ = 0.
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Example, continued

Because the map U(n−) = C[F] to M(λ) sending ξ to ξvλ is an
isomorphism, a basis of M(λ) consists of Fmv with
m = 0, 1, 2, · · · . An induction using [H,F] = −2F shows that
H · Fmvλ = (k − 2m)vλ. Then another induction using [E,F] = H
shows that EFmvλ = m(k − m + 1)vλ. Thus assuming this for
some m,

EFm+1vλ = (EF − FE)Fmvλ + FEFmvλ = HFmvλ + FEFmvλ

and by induction this equals

(k − 2m)vλ + m(k − m + 1)vλ = (m + 1)(k − m)vλ.

This completes the induction.
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Example, concluded

Since EFmvλ = m(k − m + 1)vλ, we see that Fmvλ is a singular
vector if m = k + 1. This means that k is a nonnegative integer,
or equivalently, λ is a dominant weight. The singular vector
Fmvλ is a highest weight vector for a submodule isomorphic to
M(λ− (k + 1)α). Then L(λ) = M(λ)/M(λ− (k + 1)α) is
finite-dimensional.

If we regard g as the complexification of su(2) then L(λ) is
unitary as an su(2)-module in this case where λ is dominant.
For general λ a highest weight module for λ will contain vectors
of negative norm (“ghosts”) but not for L(λ) when λ is dominant.
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The inner product for Vir

Let V be a highest weight representation of Vir with highest
weight (c, h), meaning that Cv = cv for all v ∈ V, and L0vλ = hvλ
if vλ is a highest weight vector. We will fix a highest weight
vector and denote vλ = |h〉.

In a unitary representation that comes from a conformal field
theory, Ln must be the adjoint of L−n. See Ginsparg, Applied
CFT (arXiv:hep-th/9108028) Section 3.4 for justification of this.
It is proved in Kac and Raina, Proposition 2.2 that if V is a
highest weight representation of Vir that there is a unique
Hermitian inner product on V in which Ln and L−n are adjoints.
However this inner product may not be positive definite.
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Solvable lattice models

Determining whether this inner product on the irreducible
highest weight module L(c, h) is positive definite is a problem
solved by the Kac determinant , which we now describe,
following [FMS] Section 7.2.1 and Kac-Raina, Chapters 8
and 12.

When c < 1 the representations L(c, h) when M(c, h) contains a
singular vector are used in constructing the two-dimensional
minimal models of [BPZ], which important in statistical
mechanics since they often model two-dimensional solvable
lattice models such as the Ising model at the critical
temperature.
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The Verma module

The Verma module M(c, h) is graded as follows. A basis
consists of vectors

|k〉 = L−k1 · · ·L−km |h〉, 1 6 k1 6 · · · 6 km.

We call
∑

ki = N the level of the vector. Let k = (k1, · · · , kn) be
the corresponding partition (written backwards since
traditionally partitions are written in descending order). If k and
l are two such partitions of the same level l, then the inner
product 〈l|k〉 equals

〈h|Lkm · · ·Lk1L−l1 · · ·L−kn |h〉.

(If l and k have different level then |l〉 and |k〉 are orthogonal.)
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Inner products

The number of partitions of level N is denoted p(N). The
p(N)× p(N) matrix of inner products 〈l|k〉 is denoted detN(c, h).

Let us compute some inner products. To compute 〈h|L1L−1|h〉
we use the identity [L1,L−1] = 2L0 and we see that
〈h|L1L−1|h〉 = 2h〈h|h〉 = 2h. Again, let us compute 〈h|L2

1L−2|h〉.
For this we use L1L−2 = L−2L1 + 3L−1. Remembering that
L1|h〉 = 0 we get

〈h|L2
1L−2|h〉 = 〈h|3L−1|h〉 = 6h.

Again, using the cocycle k3−k
12 = 1

2 when k = 2,

〈h|L2L−2|h〉 =
〈

h|4L0 +
C
2
|h
〉

= 4h +
c
2
, etc.
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Determinants

The determinant of the p(N)× p(N) matrix of inner products is
denoted detN(c, h) and we compute

det1(c, h) = 2h,

and

det2(c, h) = det
(
〈h|L2L−2|h〉 〈h|L2L−1L−1|h〉
〈h|L2L−1L−1|h〉 〈h|L1L1L−1L−1|h〉

)
=

=

∣∣∣∣ 4h + c
2 6h

6h 8h2 + 4h

∣∣∣∣ = 2h(16h2 + 2hc − 10h + c).

These determinants must be non-negative if the module L(c, h)
is unitary. (We allow the inner product to be semidefinite but not
indefinite.) Thus we need h > 0 and

0 6 c < 1 − (4h − 1)2/(2h + 1).
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The numbers hr,s

As another application, we may now see when M(c, h) has a
singular vector of level 2. From the above, we must have
0 = det2(c, h) and so 16h2 + (2c − 10)h + c. Solving the quadratic
equation for h we must have

h ==
1
16

(
c − 5±

√
(c − 1)(c − 25)

)
.

To proceed further the higher Kac determinants are needed. A
formula for these was found by Kac (1978). Let

hr,s(c) =
1

48
[
(13 − c)(r2 + s2) +

√
(c − 1)(c − 25)(r2 − s2)

−24rs − 2 + 2c
]
.
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The Kac Determinant Formula

The Kac determinant formula is

detn(c, h) = K
∏

r,s∈N
16rs6n

(h − hr,s(c))p(n−rs)

where K is an explicit positive constant. The proof is somewhat
difficult and may be found in Kac-Raina Chapters 8 and 12.
A first consequence is that the Verma module M(c, h) is
irreducible and unitary if c > 1 and h > 0, the key step being the
positivity of all the Kac determinants. If c = 1 then M(c, h) is
unitary unless 4h is a square in Z, and it is always (weakly)
unitary. The case c = 1 is relevant to some interesting
conformal field theories, including the free boson. See
Ginsparg Figure 14 for a survey of CFT when c = 1. If c = 0
only the trival representation L(0, 0) is unitary.
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Unitary Representations

It is better to revise the notation and write hr,s as a function of a
parameter m chosen so that

c(m) = 1 −
6

m(m + 1)

and then

hr,s(m) =
((m + 1)r − ms)2 − 1

4m(m + 1)
.

Theorem (Friedan, Shenkar, Qiu)
The module L(c, h) is unitary if and only if c = c(m) with m an
integer > 2 and h = hr,s(m) for some r, s with 1 6 s 6 r < m.

Proofs of this deep result were also given by Kac-Wakimoto
(independently) and Langlands (later). The Kac-Wakimoto
proof is described in Kac-Raina Chapter 12.
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