Lecture 14: Virasoro Vertex Algebras

Daniel Bump

January 1, 2020

Reminder of Lecture 13

We recall from Lecture 13 that a field $\Phi_{a}(z, \bar{z})$ is primary if there exist positive constants Δ_{a} and $\bar{\Delta}_{a}$ such that

$$
\begin{aligned}
& {\left[L_{n}, \Phi_{a}(z, \bar{z})\right]=(n+1) \Delta_{a} z^{n} \Phi_{a}(z, \bar{z})+z^{n+1} \frac{\partial}{\partial z} \Phi_{a}(z, \bar{z}),} \\
& {\left[\bar{L}_{n}, \Phi_{a}(z, \bar{z})\right]=(n+1) \bar{\Delta}_{a} \bar{z}^{n} \Phi_{a}(z, \bar{z})+\bar{z}^{n+1} \frac{\partial}{\partial \bar{z}} \Phi_{a}(z, \bar{z}) .}
\end{aligned}
$$

Remember from Lecture 13 the two components of the energy-momentum tensor are

$$
T(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, \quad \bar{T}(\bar{z})=\sum_{n \in \mathbb{Z}} \bar{L}_{n} \bar{z}^{-n-2} .
$$

These are fields (not primary).

Normal Order

We define the normal order for two field

$$
A(z)=\sum A_{n} z^{-n}, \quad B(w)=\sum B_{m} w^{-m}
$$

to be

$$
\sum_{n, m}: A_{n} z^{-n} B_{m} w^{-m}:
$$

where

$$
: A_{n} z^{-n} B_{m} w^{-m}:= \begin{cases}B_{m} A_{n} z^{-n} w^{-m} & \text { if }-n \geqslant 0 \\ A_{n} B_{m} z^{-n} w^{-m} & \text { otherwise } .\end{cases}
$$

(Since the field might be written $A_{n} z^{-n-1}$ we note that it is the exponent z^{-n} that determines the two cases, not the subscript of the operator A_{n}.)

The operator product expansion

With Φ_{a} a primary field, we will prove the operator product expansion
$T(z) \Phi_{a}(w, \bar{w})=\frac{\Delta_{a}}{(z-w)^{2}} \Phi_{a}(w)+\frac{1}{z-w} \frac{\partial}{\partial w} \Phi_{a}(w)+: T(z) \Phi_{a}(w, \bar{w}):$.
We have

$$
\begin{gathered}
T(z) \Phi_{a}(w)-: T(z) \Phi_{a}(w):=\sum_{n \leqslant-2}\left[L_{n}, \Phi_{a}(w)\right] z^{-n-2}= \\
\sum_{n \leqslant-2}(n+1) \Delta_{a} w^{n} z^{-n-2} \Phi_{a}(w)+w^{n+1} z^{-n-2} \frac{\partial}{\partial z} \Phi_{a}(w) .
\end{gathered}
$$

We regard this as an expansion at z. Let $k=-2-n$. This equals

$$
-\Delta_{a} \sum_{k=0}^{\infty}(k+1) w^{-k-2} z^{k}+\sum_{k=0}^{\infty} w^{-1-k} z^{k} \frac{\partial}{\partial z} \Phi_{a}(w)
$$

Proof: OPE

Both series are convergent when $|z|<|w|$ this equals

$$
\frac{\Delta_{a}}{(z-w)^{2}} \Phi_{a}(w)+\frac{1}{z-w} \frac{\partial}{\partial w} \Phi_{a}(w) .
$$

Note that although we proved this expansion by summing a power series in z, the operator product expansion gives information at w. That is, since : $T(z) \Phi_{a}(w, \bar{w})$: is analytic when $z=w$ we may write

$$
T(z) \Phi_{a}(w, \bar{w}) \sim \frac{\Delta_{a}}{(z-w)^{2}} \Phi_{a}(w)+\frac{1}{z-w} \frac{\partial}{\partial w} \Phi_{a}(w)
$$

and this expands the product of the two operators in terms of local fields at w.

OPE for the Virasoro field

Assume that the Virasoro generator C acts by the scalar c on all fields, including $T(z)$ itself. Then we say that the CFT has central charge c. In this case a slightly more difficult computation shows that

$$
T(z) T(w)=\frac{c}{2} \frac{1}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{T^{\prime}(w)}{z-w}+: T(z) T(w):
$$

Or

$$
T(z) T(w) \sim \frac{c}{2} \frac{1}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{T^{\prime}(w)}{z-w} .
$$

This can be deduced from the Virasoro commutation rules

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} c
$$

and indeed this OPE encodes this identity: see Kac Vertex Algebras for Beginners, Theorems 2.6 and 4.10.

Conformal vectors

This leads to the notion (due to Borcherds) of a conformal vertex algebra. In addition to Kac, see [FBZ] for this notion.

Let V be a vertex algebra, $\omega \in V$ a vector. Usually we use the notation $Y(v, z)=\sum v_{(n)} z^{-n-1}$ but shift the indices and write

$$
Y(v, z)=\sum_{n \in \mathbb{Z}} L_{n} v^{-n-2}
$$

Denote $T(z)=Y(v, z)$ and assume that we have the OPE

$$
T(z) T(w) \sim \frac{c}{2} \frac{1}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{T^{\prime}(w)}{z-w} .
$$

This implies that the L_{n} generate a Virasoro algebra with central charge c. Assume also that $L_{-1}=T$, the translation operator, and that L_{0} diagonalizable. Then ω is called a conformal vector and V is called a conformal vertex algebra.

Alternative formulation of the OPE

For a vertex algebra, the identity

$$
T(z) T(w)=\frac{c}{2} \frac{1}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{T^{\prime}(w)}{z-w}+: T(z) T(w):
$$

is equivalent to

$$
[T(z), T(w)]=\frac{c}{12} \partial_{w}^{3} \delta(z-w)+2 T(w) \partial_{w} \delta(z-w)+T^{\prime}(w) \delta(z-w)
$$

See [FBZ] Lemma 2.5.4, Proposition 3.3.1 and (3.4.2).

Kac's Lemma on the OPE

In the context of a vertex algebra, the equivalence of the two statements is a lemma due to Kac, that for fields ϕ, ψ and γ_{j}

$$
[\phi(z), \psi(w)]=\sum_{j=0}^{N} \frac{1}{j!} \gamma_{j}(w) \delta_{w}^{(j)} \delta(z-w)
$$

if and only if

$$
\phi(z) \psi(w)=\sum_{j=0}^{N-1} \frac{\gamma_{j}(w)}{(z-w)^{j+1}}+: \psi(z) \phi(w):
$$

For the proof, see [FBZ] Proposition 3.3.1.

Return to Heisenberg

Let us return to the example of the Heisenberg vertex algebra \mathfrak{H} from Lectures 8 and 9 . The Heisenberg Lie algebra is spanned by elements $b_{n}(n \in \mathbb{Z})$ and $\mathbb{1}$ such that

$$
\left[b_{m}, b_{n}\right]=m \delta_{m,-n} \mathbb{1} .
$$

The Bosonic Fock space is $B=\mathbb{C}\left[b_{-1}, b_{-2}, \cdots\right]$, a subspace of the universal enveloping algebra $U(\mathfrak{H})$. It is a \mathfrak{H}-module:

If $n>0$ then b_{-n} acts by multiplication and b_{n} acts by $n \partial / \partial b_{-1}$. We let b_{0} act by 0 and $\mathbb{1}$ act by 1 on B. The element $1 \in B$ (not to be confused with $\mathbb{1}$) is the vacuum vector.

Review: Heisenberg VA

Then B has the structure of a vertex algebra, and we had partially proved this. Today we will talk a bit more about the proof. We begin by defining the translation operator T by

$$
T\left(b_{j_{1}} \cdots b_{j_{k}}\right)=-\sum_{i=1}^{k} j_{i} b_{j_{1}} \cdots b_{j_{i}-1} \cdots b_{j_{k}} .
$$

We also require that $Y\left(b_{-k}, z\right)=b(z)$ where

$$
b(z)=\sum_{n \in \mathbb{Z}} b_{n} z^{-n-1}
$$

More generally, we want

$$
Y\left(b_{-k}, z\right)=\frac{1}{(k-1)!} \partial^{k-1} b(z)
$$

Review: Locality of the Heisenberg fields

The fields $b(z), b(w)$ are local due to the operator product expansion

$$
b(z) b(w)=\frac{1}{(z-w)^{2}}+: b(z) b(w):
$$

or equivalently

$$
[b(z), b(w)]=\partial_{w} \delta(z-w)
$$

It follows that their derivatives $\partial^{k-1} b(z)$ and $\partial^{l-1} b(w)$ are local by differentiating the identity

$$
(z-w)^{2}[b(z), b(w)]=0
$$

to obtain

$$
(z-w)^{2+k+l}\left[\partial_{z}^{k} b(z), \partial_{w}^{l} b(w)\right]=0
$$

At this point, one may complete the construction by invoking a reconstruction theorem which is Theorem 2.3.11 or Theorem 4.4.1 of [FBZ].

Hypotheses of the Reconstruction Theorem

Assume that we have a vector space V with a nonzero vector $|0\rangle$ and a finite or countable collection of vectors with fields

$$
a^{\alpha}(z)=\sum_{n \in \mathbb{Z}} a_{(n)}^{\alpha} z^{-n-1}
$$

such that for all $\alpha, a^{\alpha}(z)|0\rangle \in \operatorname{End}(V)[[z]]$ and

$$
\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} .
$$

It is further assumed that $\left[T, a^{k}(z)\right]=\partial_{z} a^{k}(z)$, that the fields $a^{k}(z), a^{l}(w)$ are mutually local. Finally we assume the index set $\{\alpha\}$ to be ordered such that V has a basis of vectors

$$
a_{\left(j_{1}\right)}^{\alpha_{1}} \cdots a_{\left(j_{m}\right)}^{\alpha_{m}}|0\rangle
$$

with $j_{1} \leqslant j_{2} \leqslant \cdots \leqslant j_{m}<0$ and such that if $j_{i}=j_{i+1}$ then $\alpha_{i} \leqslant \alpha_{i+1}$.

Reconstruction Theorem

Then the reconstruction theorem asserts that V may be made into a vertex algebra with

$$
\begin{gathered}
Y\left(a_{\left(j_{1}\right)}^{\alpha_{1}} \cdots a_{\left(j_{m}\right)}^{\alpha_{m}}|0\rangle, z\right)= \\
\frac{1}{\left(-j_{1}-1\right)!\cdots\left(-j_{m}-1\right)!}: \partial_{z}^{-j_{1}-1} a^{\alpha_{1}}(z) \cdots \partial_{z}^{-j_{m}-1} a^{\alpha_{m}}(z): .
\end{gathered}
$$

For the Heisenberg Lie algebra, we need only one α, and $a^{\alpha}=b_{-1}$,

$$
a^{\alpha}(z)=b(z)=\sum_{n \in \mathbb{Z}} b_{n} z^{-n-1}
$$

Review of Lecture 4: Lie algebras with triangular decomposition

Let \mathfrak{g} be a complex Lie algebra that can be written as $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{n}_{+} \oplus \mathfrak{n}_{-}$, where $\mathfrak{h}, \mathfrak{n}_{+}, \mathfrak{n}_{-}$are Lie subalgebras with \mathfrak{h} abelian, such that

$$
\left[\mathfrak{h}, \mathfrak{n}_{+}\right] \subseteq \mathfrak{n}_{+}, \quad\left[\mathfrak{h}, \mathfrak{n}_{-}\right] \subseteq \mathfrak{n}_{-}
$$

We require that

$$
\left[\mathfrak{h}, \mathfrak{n}_{+}\right] \subset \mathfrak{n}_{+}, \quad\left[\mathfrak{h}, \mathfrak{n}_{0}\right] \subset \mathfrak{n}_{-} .
$$

This implies that $\mathfrak{n}_{\mu} \oplus \mathfrak{h}$ are Lie algebras, denoted \mathfrak{b} and \mathfrak{b}_{-}.
We assume that $\mathfrak{n}_{ \pm}$have weight space decompositions with respect to the adjoint representation under \mathfrak{h} and that 0 is not a weight. Moreover we assume there is a closed convex cone $D \subset \mathfrak{h}^{*}$ such that D (resp. $-D$) contains the weights of $\mathfrak{n}_{+}\left(\mathfrak{n}_{-}\right)$ and that $D \cap(-D)=\{0\}$.

Review: BGG Category 0

Let Φ_{-}be the set of weights in \mathfrak{n}_{-}which is an \mathfrak{h}-module under the adjoint representation. Let Q_{-}be the set of finite sums of elements of Φ_{-}(with repetitions allowed). This is a discrete subset of $-D$.

The Bernstein-Gelfand-Gelfand (BGG) category \mathcal{O} of modules can be defined for any Lie algebra with triangular decomposition. A module V in this category is assumed to have a weight space decomposition with finite-dimensional weight spaces. Furthermore, it is assumed that there is a finite set of weights $\lambda_{1}, \cdots, \lambda_{N}$ such that the weights of V lie in the set

$$
\bigcup_{i}\left(\lambda_{i}+Q_{-}\right) .
$$

Review: Highest weight modules

A module V is called a highest weight module with highest weight $\lambda \in \mathfrak{h}^{*}$ if there is a vector $v \in V(\lambda)$ such that $X \cdot v=0$ for $X \in \mathfrak{n}_{+}$, and such that $V=U(\mathfrak{g}) \cdot v$. Since

$$
U(\mathfrak{g}) \cong U(\mathfrak{h}) \otimes U\left(\mathfrak{n}_{+}\right) \otimes U\left(\mathfrak{n}_{-}\right)
$$

this is equivalent to $V=U\left(\mathfrak{n}_{n}\right) \cdot v$.
Any highest weight module is in Category \mathcal{O}.

Review: Verma modules

There exists a unique highest weight module M_{λ} such that if V is a highest weight module with highest weight λ then V is isomorphic to a quotient of M_{λ}. To construct M_{λ}, note that λ extends to a character of $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}_{+}$by letting \mathfrak{n}_{+}act by zero. Let \mathbb{C}_{λ} be \mathbb{C} with this \mathfrak{b}-module structure, with generator 1_{λ}. Define

$$
M_{\lambda}=U(\mathfrak{g}) \otimes_{\mathfrak{b}} \mathbb{C}_{\lambda}
$$

In view of

$$
U(\mathfrak{g}) \cong U(\mathfrak{h}) \otimes U\left(\mathfrak{n}_{+}\right) \otimes U\left(\mathfrak{n}_{-}\right)
$$

the map $\xi \rightarrow \xi \otimes 1_{\lambda}$ is a vector space isomorphism $U\left(\mathfrak{n}_{-} \rightarrow M_{\lambda}\right.$. Let $v_{\lambda}=1 \otimes 1_{\lambda}$ be the highest weight element of M_{λ}, unique up to scalar.

Lemma

Let \mathfrak{h} be an abelian Lie algebra and let V be a \mathfrak{h}-module. We say that V has an weight space decomposition with respect to \mathfrak{h}
if

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}, \quad V_{\lambda}=\{v \mid X \cdot v=\lambda(X) v, \quad X \in \mathfrak{h}\}
$$

and the spaces V_{λ} are finite-dimensional.

Lemma

If V has a weight-space decomposition and U is any submodule then U also has a weight space decomposition.

For a proof see Kac-Raina, Corollary 1.1.

Review: Irreducibles

Let V be a highest weight module, for example a Verma module, with highest weight vector u_{λ}.

Lemma

V has a unique maximal proper submodule.
To prove this, note that a submodule U of V is proper if and only if $u_{\lambda} \notin V$. Indeed, if U is not proper, then $u_{\lambda} \in U$, and conversely if U is proper, then u_{λ} cannot be in U because u_{λ} generates V. Now every proper submodule U has a weight space decomposition

$$
U=\bigoplus_{\mu \neq \lambda} U_{\mu}
$$

So the sum of the proper submodules has a weight space decomposition not involving λ, and is therefore proper.

Two triangular decompositions of Vir

There are two noteworthy triangular decompositions of Vir. The one we usually use is $\mathfrak{h}=\mathbb{C} C \oplus \mathcal{C} L_{0}$,

$$
\mathfrak{n}_{+}=\bigoplus_{n>0} \mathbb{C} L_{n}, \quad \mathfrak{n}_{-}=\bigoplus_{n<0} \mathbb{C} L_{n}
$$

The characters of \mathfrak{h} are determined by the eigenvalues c and h of C and L_{0}.

The other triangular decomposition has $\mathfrak{h}^{\prime}=\mathbb{C} C$,

$$
\mathfrak{n}_{+}^{\prime}=\bigoplus_{n \geqslant-1} \mathbb{C} L_{n}, \quad \mathfrak{n}_{-}^{\prime}=\bigoplus_{n<-1} \mathbb{C} L_{n}
$$

To check that $\mathfrak{n}_{+}^{\prime}$ is a Lie algebra, note that
$\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}$ because $\delta_{m,-n} \frac{m^{3}-m}{12}=0$ if $m, n \geqslant-1$.

Virasoro Vertex Algebras

Fix $c \in \mathbb{C}^{\times}$. We take the Verma module $M(c)$ for the alternative triangular decomposition with the character $C \rightarrow c$ of \mathfrak{h}^{\prime}.
Following [FBZ] we want to make this a vertex algebra. The highest weight element becomes the vacuum $|0\rangle$ and the translation operator $T=L_{-1}$, so $T|0\rangle=0$. We require

$$
Y\left(L_{-2}|0\rangle\right)=T(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
$$

Because

$$
[T(z), T(w)]=\frac{c}{12} \partial_{w}^{3} \delta(z-w)+2 T(w) \partial_{w} \delta_{w}(z-w)+T^{\prime}(w) \delta(z-w)
$$

we have $(z-w)^{4}[T(z), T(w)]=0$ and therefore $T(z)$ is local.
The construction of the vertex algebra is concluded using the reconstruction theorem.

