Lecture 14: Virasoro Vertex Algebras

Daniel Bump

January 1, 2020

Reminder of Lecture 13

We recall from Lecture 13 that a field $\Phi_a(z, \overline{z})$ is primary if there exist positive constants Δ_a and $\overline{\Delta}_a$ such that

$$[L_n, \Phi_a(z, \overline{z})] = (n+1)\Delta_a z^n \Phi_a(z, \overline{z}) + z^{n+1} \frac{\partial}{\partial z} \Phi_a(z, \overline{z}),$$

$$\left[\overline{L}_{n}, \Phi_{a}\left(z, \overline{z}\right)\right] = (n+1)\overline{\Delta}_{a}\overline{z}^{n}\Phi_{a}\left(z, \overline{z}\right) + \overline{z}^{n+1}\frac{\partial}{\partial\overline{z}}\Phi_{a}\left(z, \overline{z}\right).$$

Remember from Lecture 13 the two components of the energy-momentum tensor are

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}, \qquad \overline{T}(\overline{z}) = \sum_{n \in \mathbb{Z}} \overline{L}_n \overline{z}^{-n-2}.$$

These are fields (not primary).

Normal Order

We define the normal order for two field

$$A(z) = \sum A_n z^{-n}, \qquad B(w) = \sum B_m w^{-m}$$

to be

$$\sum_{n,m} : A_n z^{-n} B_m w^{-m} :$$

where

$$: A_n z^{-n} B_m w^{-m} := \begin{cases} B_m A_n z^{-n} w^{-m} & \text{if } -n \ge 0, \\ A_n B_m z^{-n} w^{-m} & \text{otherwise.} \end{cases}$$

(Since the field might be written $A_n z^{-n-1}$ we note that it is the exponent z^{-n} that determines the two cases, not the subscript of the operator A_n .)

The operator product expansion

With Φ_a a primary field, we will prove the operator product expansion

$$T(z)\Phi_a(w,\overline{w}) = \frac{\Delta_a}{(z-w)^2}\Phi_a(w) + \frac{1}{z-w}\frac{\partial}{\partial w}\Phi_a(w) + T(z)\Phi_a(w,\overline{w}):.$$

We have

$$T(z)\Phi_a(w) - : T(z)\Phi_a(w) := \sum_{n \leq -2} [L_n, \Phi_a(w)] z^{-n-2} =$$

$$\sum_{n \leqslant -2} (n+1)\Delta_a w^n z^{-n-2} \Phi_a(w) + w^{n+1} z^{-n-2} \frac{\partial}{\partial z} \Phi_a(w).$$

We regard this as an expansion at *z*. Let k = -2 - n. This equals

$$-\Delta_a \sum_{k=0}^{\infty} (k+1)w^{-k-2}z^k + \sum_{k=0}^{\infty} w^{-1-k}z^k \frac{\partial}{\partial z} \Phi_a(w)$$

Proof: OPE

Both series are convergent when |z| < |w| this equals

$$\frac{\Delta_a}{(z-w)^2}\Phi_a(w) + \frac{1}{z-w}\frac{\partial}{\partial w}\Phi_a(w).$$

Note that although we proved this expansion by summing a power series in *z*, the operator product expansion gives information at *w*. That is, since : $T(z)\Phi_a(w,\overline{w})$: is analytic when z = w we may write

$$T(z)\Phi_a(w,\overline{w}) \sim \frac{\Delta_a}{(z-w)^2}\Phi_a(w) + \frac{1}{z-w}\frac{\partial}{\partial w}\Phi_a(w)$$

and this expands the product of the two operators in terms of local fields at *w*.

OPE for the Virasoro field

Assume that the Virasoro generator *C* acts by the scalar *c* on all fields, including T(z) itself. Then we say that the CFT has central charge *c*. In this case a slightly more difficult computation shows that

$$T(z)T(w) = \frac{c}{2}\frac{1}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{T'(w)}{z-w} + :T(z)T(w):,$$

or

$$T(z)T(w) \sim \frac{c}{2} \frac{1}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{T'(w)}{z-w}$$

This can be deduced from the Virasoro commutation rules

$$[L_n, L_m] = (n-m)L_{n+m} + \delta_{n,-m} \frac{n^3 - n}{12}c$$

and indeed this OPE encodes this identity: see Kac Vertex Algebras for Beginners, Theorems 2.6 and 4.10.

Conformal vectors

This leads to the notion (due to Borcherds) of a conformal vertex algebra. In addition to Kac, see [FBZ] for this notion.

Let *V* be a vertex algebra, $\omega \in V$ a vector. Usually we use the notation $Y(v, z) = \sum v_{(n)} z^{-n-1}$ but shift the indices and write

$$Y(v,z) = \sum_{n \in \mathbb{Z}} L_n v^{-n-2}.$$

Denote T(z) = Y(v, z) and assume that we have the OPE

$$T(z)T(w) \sim \frac{c}{2} \frac{1}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{T'(w)}{z-w}$$

This implies that the L_n generate a Virasoro algebra with central charge c. Assume also that $L_{-1} = T$, the translation operator, and that L_0 diagonalizable. Then ω is called a conformal vector and V is called a conformal vertex algebra.

Alternative formulation of the OPE

For a vertex algebra, the identity

$$T(z)T(w) = \frac{c}{2}\frac{1}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{T'(w)}{z-w} + :T(z)T(w):,$$

is equivalent to

$$[T(z), T(w)] = \frac{c}{12}\partial_w^3\delta(z-w) + 2T(w)\partial_w\delta(z-w) + T'(w)\delta(z-w).$$

See [FBZ] Lemma 2.5.4, Proposition 3.3.1 and (3.4.2).

Kac's Lemma on the OPE

In the context of a vertex algebra, the equivalence of the two statements is a lemma due to Kac, that for fields ϕ , ψ and γ_j

$$[\phi(z),\psi(w)] = \sum_{j=0}^{N} \frac{1}{j!} \gamma_j(w) \delta_w^{(j)} \delta(z-w)$$

if and only if

$$\phi(z)\psi(w) = \sum_{j=0}^{N-1} \frac{\gamma_j(w)}{(z-w)^{j+1}} + :\psi(z)\phi(w):.$$

For the proof, see [FBZ] Proposition 3.3.1.

Return to Heisenberg

Let us return to the example of the Heisenberg vertex algebra \mathfrak{H} from Lectures 8 and 9. The Heisenberg Lie algebra is spanned by elements b_n ($n \in \mathbb{Z}$) and $\mathbb{1}$ such that

$$[b_m, b_n] = m\delta_{m, -n}\mathbb{1}.$$

The Bosonic Fock space is $B = \mathbb{C}[b_{-1}, b_{-2}, \cdots]$, a subspace of the universal enveloping algebra $U(\mathfrak{H})$. It is a \mathfrak{H} -module:

If n > 0 then b_{-n} acts by multiplication and b_n acts by $n\partial/\partial b_{-1}$. We let b_0 act by 0 and 1 act by 1 on *B*. The element $1 \in B$ (not to be confused with 1) is the vacuum vector.

Review: Heisenberg VA

Then *B* has the structure of a vertex algebra, and we had partially proved this. Today we will talk a bit more about the proof. We begin by defining the translation operator T by

$$T(b_{j_1}\cdots b_{j_k})=-\sum_{i=1}^k j_i b_{j_1}\cdots b_{j_i-1}\cdots b_{j_k}.$$

We also require that $Y(b_{-k}, z) = b(z)$ where

$$b(z) = \sum_{n \in \mathbb{Z}} b_n z^{-n-1}.$$

More generally, we want

$$Y(b_{-k}, z) = \frac{1}{(k-1)!} \partial^{k-1} b(z).$$

Review: Locality of the Heisenberg fields

The fields b(z), b(w) are local due to the operator product expansion

$$b(z)b(w) = \frac{1}{(z-w)^2} + :b(z)b(w):$$

or equivalently

$$[b(z), b(w)] = \partial_w \delta(z - w).$$

It follows that their derivatives $\partial^{k-1}b(z)$ and $\partial^{l-1}b(w)$ are local by differentiating the identity

$$(z-w)^{2}[b(z), b(w)] = 0$$

to obtain

$$(z-w)^{2+k+l}[\partial_z^k b(z),\partial_w^l b(w)] = 0.$$

At this point, one may complete the construction by invoking a reconstruction theorem which is Theorem 2.3.11 or Theorem 4.4.1 of [FBZ].

Hypotheses of the Reconstruction Theorem

Assume that we have a vector space V with a nonzero vector $|0\rangle$ and a finite or countable collection of vectors with fields

$$a^{\alpha}(z) = \sum_{n \in \mathbb{Z}} a^{\alpha}_{(n)} z^{-n-1}$$

such that for all α , $a^{\alpha}(z)|0\rangle \in \operatorname{End}(V)[[z]]$ and

$$a^{\alpha}(z)|0\rangle|_{z=0} = a^{\alpha}.$$

It is further assumed that $[T, a^k(z)] = \partial_z a^k(z)$, that the fields $a^k(z), a^l(w)$ are mutually local. Finally we assume the index set $\{\alpha\}$ to be ordered such that *V* has a basis of vectors

$$a^{lpha_1}_{(j_1)}\cdots a^{lpha_m}_{(j_m)}|0
angle$$

with $j_1 \leq j_2 \leq \cdots \leq j_m < 0$ and such that if $j_i = j_{i+1}$ then $\alpha_i \leq \alpha_{i+1}$.

Reconstruction Theorem

Then the reconstruction theorem asserts that *V* may be made into a vertex algebra with

 $\tau_{Z}(\alpha_{1}) = \alpha_{m} | \alpha \rangle$

$$Y(a_{(j_1)}^{m}\cdots a_{(j_m)}^{m}|0\rangle, z) = \frac{1}{(-j_1-1)!\cdots (-j_m-1)!}: \partial_z^{-j_1-1}a^{\alpha_1}(z)\cdots \partial_z^{-j_m-1}a^{\alpha_m}(z):.$$

For the Heisenberg Lie algebra, we need only one α , and $a^{\alpha} = b_{-1}$,

$$a^{\alpha}(z) = b(z) = \sum_{n \in \mathbb{Z}} b_n z^{-n-1}.$$

Review of Lecture 4: Lie algebras with triangular decomposition

Let \mathfrak{g} be a complex Lie algebra that can be written as $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{n}_+ \oplus \mathfrak{n}_-$, where $\mathfrak{h}, \mathfrak{n}_+, \mathfrak{n}_-$ are Lie subalgebras with \mathfrak{h} abelian, such that

$$[\mathfrak{h},\mathfrak{n}_+]\subseteq\mathfrak{n}_+,\qquad [\mathfrak{h},\mathfrak{n}_-]\subseteq\mathfrak{n}_-.$$

We require that

 $[\mathfrak{h},\mathfrak{n}_+]\subset\mathfrak{n}_+,\qquad [\mathfrak{h},\mathfrak{n}_0]\subset\mathfrak{n}_-.$

This implies that $\mathfrak{n}_{\mu} \oplus \mathfrak{h}$ are Lie algebras, denoted \mathfrak{b} and \mathfrak{b}_{-} .

We assume that \mathfrak{n}_{\pm} have weight space decompositions with respect to the adjoint representation under \mathfrak{h} and that 0 is not a weight. Moreover we assume there is a closed convex cone $D \subset \mathfrak{h}^*$ such that D (resp. -D) contains the weights of \mathfrak{n}_+ (\mathfrak{n}_-) and that $D \cap (-D) = \{0\}$.

Review: BGG Category O

Let Φ_- be the set of weights in \mathfrak{n}_- which is an \mathfrak{h} -module under the adjoint representation. Let Q_- be the set of finite sums of elements of Φ_- (with repetitions allowed). This is a discrete subset of -D.

The Bernstein-Gelfand-Gelfand (BGG) category \bigcirc of modules can be defined for any Lie algebra with triangular decomposition. A module *V* in this category is assumed to have a weight space decomposition with finite-dimensional weight spaces. Furthermore, it is assumed that there is a finite set of weights $\lambda_1, \dots, \lambda_N$ such that the weights of *V* lie in the set

$$\bigcup_i (\lambda_i + Q_-).$$

Review: Highest weight modules

A module *V* is called a highest weight module with highest weight $\lambda \in \mathfrak{h}^*$ if there is a vector $v \in V(\lambda)$ such that $X \cdot v = 0$ for $X \in \mathfrak{n}_+$, and such that $V = U(\mathfrak{g}) \cdot v$. Since

$$U(\mathfrak{g}) \cong U(\mathfrak{h}) \otimes U(\mathfrak{n}_+) \otimes U(\mathfrak{n}_-)$$

this is equivalent to $V = U(\mathfrak{n}_n) \cdot v$.

Any highest weight module is in Category O.

Review: Verma modules

There exists a unique highest weight module M_{λ} such that if V is a highest weight module with highest weight λ then V is isomorphic to a quotient of M_{λ} . To construct M_{λ} , note that λ extends to a character of $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ by letting \mathfrak{n}_+ act by zero. Let \mathbb{C}_{λ} be \mathbb{C} with this \mathfrak{b} -module structure, with generator 1_{λ} . Define

$$M_{\lambda} = U(\mathfrak{g}) \otimes_{\mathfrak{b}} \mathbb{C}_{\lambda}.$$

In view of

$$U(\mathfrak{g})\cong U(\mathfrak{h})\otimes U(\mathfrak{n}_+)\otimes U(\mathfrak{n}_-),$$

the map $\xi \to \xi \otimes 1_{\lambda}$ is a vector space isomorphism $U(\mathfrak{n}_{-} \to M_{\lambda})$. Let $v_{\lambda} = 1 \otimes 1_{\lambda}$ be the highest weight element of M_{λ} , unique up to scalar.

Lemma

Let \mathfrak{h} be an abelian Lie algebra and let V be a \mathfrak{h} -module. We say that V has an weight space decomposition with respect to \mathfrak{h} if

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}, \qquad V_{\lambda} = \{ v | X \cdot v = \lambda(X)v, \qquad X \in \mathfrak{h} \}$$

and the spaces V_{λ} are finite-dimensional.

Lemma

If *V* has a weight-space decomposition and *U* is any submodule then *U* also has a weight space decomposition.

For a proof see Kac-Raina, Corollary 1.1.

Review: Irreducibles

Let *V* be a highest weight module, for example a Verma module, with highest weight vector u_{λ} .

Lemma

V has a unique maximal proper submodule.

To prove this, note that a submodule U of V is proper if and only if $u_{\lambda} \notin V$. Indeed, if U is not proper, then $u_{\lambda} \in U$, and conversely if U is proper, then u_{λ} cannot be in U because u_{λ} generates V. Now every proper submodule U has a weight space decomposition

$$U = \bigoplus_{\mu \neq \lambda} U_{\mu}.$$

So the sum of the proper submodules has a weight space decomposition not involving λ , and is therefore proper.

Two triangular decompositions of Vir

There are two noteworthy triangular decompositions of Vir. The one we usually use is $\mathfrak{h} = \mathbb{C}C \oplus \mathbb{C}L_0$,

$$\mathfrak{n}_+ = \bigoplus_{n>0} \mathbb{C}L_n, \qquad \mathfrak{n}_- = \bigoplus_{n<0} \mathbb{C}L_n.$$

The characters of \mathfrak{h} are determined by the eigenvalues c and h of C and L_0 .

The other triangular decomposition has $\mathfrak{h}' = \mathbb{C}C$,

$$\mathfrak{n}'_+ = \bigoplus_{n \geqslant -1} \mathbb{C}L_n, \qquad \mathfrak{n}'_- = \bigoplus_{n < -1} \mathbb{C}L_n.$$

To check that \mathfrak{n}'_+ is a Lie algebra, note that $[L_m, L_n] = (m-n)L_{m+n}$ because $\delta_{m,-n} \frac{m^3-m}{12} = 0$ if $m, n \ge -1$.

Virasoro Vertex Algebras

Fix $c \in \mathbb{C}^{\times}$. We take the Verma module M(c) for the alternative triangular decomposition with the character $C \to c$ of \mathfrak{h}' . Following [FBZ] we want to make this a vertex algebra. The highest weight element becomes the vacuum $|0\rangle$ and the translation operator $T = L_{-1}$, so $T|0\rangle = 0$. We require

$$Y(L_{-2}|0\rangle) = T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}.$$

Because

 $[T(z), T(w)] = \frac{c}{12}\partial_w^3\delta(z-w) + 2T(w)\partial_w\delta_w(z-w) + T'(w)\delta(z-w),$

we have $(z - w)^4 [T(z), T(w)] = 0$ and therefore T(z) is local.

The construction of the vertex algebra is concluded using the reconstruction theorem.