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Reminder of Lecture 13

We recall from Lecture 13 that a field Φa (z, z) is primary if there
exist positive constants ∆a and ∆̄a such that

[Ln,Φa (z, z)] = (n + 1)∆aznΦa (z, z) + zn+1 ∂

∂z
Φa (z, z) ,

[
Ln,Φa (z, z)

]
= (n + 1)∆aznΦa (z, z) + zn+1 ∂

∂z
Φa (z, z) .

Remember from Lecture 13 the two components of the
energy-momentum tensor are

T(z) =
∑
n∈Z

Lnz−n−2, T (z) =
∑
n∈Z

Lnz−n−2.

These are fields (not primary).
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Normal Order

We define the normal order for two field

A(z) =
∑

Anz−n, B(w) =
∑

Bmw−m

to be ∑
n,m

: Anz−nBmw−m :

where

: Anz−nBmw−m : =

{
BmAnz−nw−m if −n > 0,
AnBmz−nw−m otherwise.

(Since the field might be written Anz−n−1 we note that it is the
exponent z−n that determines the two cases, not the subscript
of the operator An.)
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The operator product expansion

With Φa a primary field, we will prove the operator product
expansion

T(z)Φa (w, w) =
∆a

(z − w)2Φa(w)+
1

z − w
∂

∂w
Φa(w)+: T(z)Φa (w, w) : .

We have

T(z)Φa(w) − : T(z)Φa(w) : =
∑

n6−2

[Ln,Φa(w)]z−n−2 =

∑
n6−2

(n + 1)∆awnz−n−2Φa(w) + wn+1z−n−2 ∂

∂z
Φa(w).

We regard this as an expansion at z. Let k = −2 − n. This
equals

−∆a

∞∑
k=0

(k + 1)w−k−2zk +

∞∑
k=0

w−1−kzk ∂

∂z
Φa(w)
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Proof: OPE

Both series are convergent when |z| < |w| this equals

∆a

(z − w)2Φa(w) +
1

z − w
∂

∂w
Φa(w).

Note that although we proved this expansion by summing a
power series in z, the operator product expansion gives
information at w. That is, since : T(z)Φa (w, w) : is analytic when
z = w we may write

T(z)Φa (w, w) ∼
∆a

(z − w)2Φa(w) +
1

z − w
∂

∂w
Φa(w)

and this expands the product of the two operators in terms of
local fields at w.
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OPE for the Virasoro field

Assume that the Virasoro generator C acts by the scalar c on all
fields, including T(z) itself. Then we say that the CFT has
central charge c. In this case a slightly more difficult
computation shows that

T(z)T(w) =
c
2

1
(z − w)4 +

2T(w)
(z − w)2 +

T ′(w)
z − w

+ : T(z)T(w) : ,

or

T(z)T(w) ∼
c
2

1
(z − w)4 +

2T(w)
(z − w)2 +

T ′(w)
z − w

.

This can be deduced from the Virasoro commutation rules

[Ln, Lm] = (n − m)Ln+m + δn,−m
n3 − n

12
c,

and indeed this OPE encodes this identity: see Kac Vertex
Algebras for Beginners, Theorems 2.6 and 4.10.
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Conformal vectors

This leads to the notion (due to Borcherds) of a conformal
vertex algebra. In addition to Kac, see [FBZ] for this notion.

Let V be a vertex algebra, ω ∈ V a vector. Usually we use the
notation Y(v, z) =

∑
v(n)z−n−1 but shift the indices and write

Y(v, z) =
∑
n∈Z

Lnv−n−2.

Denote T(z) = Y(v, z) and assume that we have the OPE

T(z)T(w) ∼
c
2

1
(z − w)4 +

2T(w)
(z − w)2 +

T ′(w)
z − w

.

This implies that the Ln generate a Virasoro algebra with central
charge c. Assume also that L−1 = T, the translation operator,
and that L0 diagonalizable. Then ω is called a conformal vector
and V is called a conformal vertex algebra.
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Alternative formulation of the OPE

For a vertex algebra, the identity

T(z)T(w) =
c
2

1
(z − w)4 +

2T(w)
(z − w)2 +

T ′(w)
z − w

+ : T(z)T(w) : ,

is equivalent to

[T(z), T(w)] =
c

12
∂3

wδ(z − w) + 2T(w)∂wδ(z − w) + T ′(w)δ(z − w).

See [FBZ] Lemma 2.5.4, Proposition 3.3.1 and (3.4.2).
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Kac’s Lemma on the OPE

In the context of a vertex algebra, the equivalence of the two
statements is a lemma due to Kac, that for fields φ, ψ and γj

[φ(z),ψ(w)] =
N∑

j=0

1
j!
γj(w)δ

(j)
w δ(z − w)

if and only if

φ(z)ψ(w) =
N−1∑
j=0

γj(w)
(z − w)j+1 + : ψ(z)φ(w) :.

For the proof, see [FBZ] Proposition 3.3.1.
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Return to Heisenberg

Let us return to the example of the Heisenberg vertex algebra
H from Lectures 8 and 9. The Heisenberg Lie algebra is
spanned by elements bn (n ∈ Z) and 1 such that

[bm, bn] = mδm,−n1.

The Bosonic Fock space is B = C[b−1, b−2, · · · ], a subspace of
the universal enveloping algebra U(H). It is a H-module:

If n > 0 then b−n acts by multiplication and bn acts by n∂/∂b−1.
We let b0 act by 0 and 1 act by 1 on B. The element 1 ∈ B (not
to be confused with 1) is the vacuum vector.
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Review: Heisenberg VA

Then B has the structure of a vertex algebra, and we had
partially proved this. Today we will talk a bit more about the
proof. We begin by defining the translation operator T by

T(bj1 · · · bjk) = −

k∑
i=1

jibj1 · · · bji−1 · · · bjk .

We also require that Y(b−k, z) = b(z) where

b(z) =
∑
n∈Z

bnz−n−1.

More generally, we want

Y(b−k, z) =
1

(k − 1)!
∂k−1b(z).
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Review: Locality of the Heisenberg fields

The fields b(z), b(w) are local due to the operator product
expansion

b(z)b(w) =
1

(z − w)2 + : b(z)b(w) :

or equivalently
[b(z), b(w)] = ∂wδ(z − w).

It follows that their derivatives ∂k−1b(z) and ∂l−1b(w) are local
by differentiating the identity

(z − w)2[b(z), b(w)] = 0

to obtain
(z − w)2+k+l[∂k

zb(z),∂l
wb(w)] = 0.

At this point, one may complete the construction by invoking a
reconstruction theorem which is Theorem 2.3.11 or
Theorem 4.4.1 of [FBZ].
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Hypotheses of the Reconstruction Theorem

Assume that we have a vector space V with a nonzero vector
|0〉 and a finite or countable collection of vectors with fields

aα(z) =
∑
n∈Z

aα(n)z
−n−1

such that for all α, aα(z)|0〉 ∈ End(V)[[z]] and

aα(z)|0〉|z=0 = aα.

It is further assumed that [T, ak(z)] = ∂zak(z), that the fields
ak(z), al(w) are mutually local. Finally we assume the index set
{α} to be ordered such that V has a basis of vectors

aα1
(j1)
· · · aαm

(jm)
|0〉

with j1 6 j2 6 · · · 6 jm < 0 and such that if ji = ji+1 then
αi 6 αi+1.
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Reconstruction Theorem

Then the reconstruction theorem asserts that V may be made
into a vertex algebra with

Y(aα1
(j1)
· · · aαm

(jm)
|0〉, z) =

1
(−j1 − 1)! · · · (−jm − 1)!

: ∂−j1−1
z aα1(z) · · ·∂−jm−1

z aαm(z) : .

For the Heisenberg Lie algebra, we need only one α, and
aα = b−1,

aα(z) = b(z) =
∑
n∈Z

bnz−n−1.
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Review of Lecture 4: Lie algebras with triangular decomposition

Let g be a complex Lie algebra that can be written as
g = h⊕ n+ ⊕ n−, where h, n+, n− are Lie subalgebras with h
abelian, such that

[h, n+] ⊆ n+, [h, n−] ⊆ n−.

We require that

[h, n+] ⊂ n+, [h, n0] ⊂ n−.

This implies that nµ ⊕ h are Lie algebras, denoted b and b−.

We assume that n± have weight space decompositions with
respect to the adjoint representation under h and that 0 is not a
weight. Moreover we assume there is a closed convex cone
D ⊂ h∗ such that D (resp. −D) contains the weights of n+ (n−)
and that D ∩ (−D) = {0}.
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Review: BGG Category O

Let Φ− be the set of weights in n− which is an h-module under
the adjoint representation. Let Q− be the set of finite sums of
elements of Φ− (with repetitions allowed). This is a discrete
subset of −D.

The Bernstein-Gelfand-Gelfand (BGG) category O of modules
can be defined for any Lie algebra with triangular
decomposition. A module V in this category is assumed to have
a weight space decomposition with finite-dimensional weight
spaces. Furthermore, it is assumed that there is a finite set of
weights λ1, · · · , λN such that the weights of V lie in the set⋃

i

(λi + Q−).



Conformal Vertex Algebras Reconstruction Theorem for Vertex Algebra Verma Modules and Virasoro VA

Review: Highest weight modules

A module V is called a highest weight module with highest
weight λ ∈ h∗ if there is a vector v ∈ V(λ) such that X · v = 0 for
X ∈ n+, and such that V = U(g) · v. Since

U(g) ∼= U(h)⊗ U(n+)⊗ U(n−)

this is equivalent to V = U(nn) · v.

Any highest weight module is in Category O.
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Review: Verma modules

There exists a unique highest weight module Mλ such that if V
is a highest weight module with highest weight λ then V is
isomorphic to a quotient of Mλ. To construct Mλ, note that λ
extends to a character of b = h⊕ n+ by letting n+ act by zero.
Let Cλ be C with this b-module structure, with generator 1λ.
Define

Mλ = U(g)⊗b Cλ.

In view of
U(g) ∼= U(h)⊗ U(n+)⊗ U(n−),

the map ξ→ ξ⊗ 1λ is a vector space isomorphism
U(n− → Mλ. Let vλ = 1⊗ 1λ be the highest weight element of
Mλ, unique up to scalar.
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Lemma

Let h be an abelian Lie algebra and let V be a h-module. We
say that V has an weight space decomposition with respect to h
if

V =
⊕
λ∈h∗

Vλ, Vλ = {v|X · v = λ(X)v, X ∈ h}

and the spaces Vλ are finite-dimensional.

Lemma
If V has a weight-space decomposition and U is any submodule
then U also has a weight space decomposition.

For a proof see Kac-Raina, Corollary 1.1.
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Review: Irreducibles

Let V be a highest weight module, for example a Verma
module, with highest weight vector uλ.

Lemma
V has a unique maximal proper submodule.

To prove this, note that a submodule U of V is proper if and only
if uλ /∈ V. Indeed, if U is not proper, then uλ ∈ U, and
conversely if U is proper, then uλ cannot be in U because uλ
generates V. Now every proper submodule U has a weight
space decomposition

U =
⊕
µ 6=λ

Uµ.

So the sum of the proper submodules has a weight space
decomposition not involving λ, and is therefore proper.
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Two triangular decompositions of Vir

There are two noteworthy triangular decompositions of Vir. The
one we usually use is h = CC ⊕ CL0,

n+ =
⊕
n>0

CLn, n− =
⊕
n<0

CLn.

The characters of h are determined by the eigenvalues c and h
of C and L0.

The other triangular decomposition has h ′ = CC,

n ′+ =
⊕

n>−1

CLn, n ′− =
⊕

n<−1

CLn.

To check that n ′+ is a Lie algebra, note that
[Lm, Ln] = (m − n)Lm+n because δm,−n

m3−m
12 = 0 if m, n > −1.
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Virasoro Vertex Algebras

Fix c ∈ C×. We take the Verma module M(c) for the alternative
triangular decomposition with the character C→ c of h ′.
Following [FBZ] we want to make this a vertex algebra. The
highest weight element becomes the vacuum |0〉 and the
translation operator T = L−1, so T |0〉 = 0. We require

Y(L−2|0〉) = T(z) =
∑
n∈Z

Lnz−n−2.

Because

[T(z), T(w)] =
c

12
∂3

wδ(z−w) + 2T(w)∂wδw(z−w) + T ′(w)δ(z−w),

we have (z − w)4[T(z), T(w)] = 0 and therefore T(z) is local.

The construction of the vertex algebra is concluded using the
reconstruction theorem.
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