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Review: s; permutes ® — {«;}

The roots @ may be classified as real and imaginary. A root «
is real if w(o) = «; is a simple root for some w € W. Otherwise,
it is imaginary. In Chapter 5 Kac proves a number of important
facts about the root system. We will omit these proofs since
they can be see by inspection in affine Lie algebras, the case
we will ultimately focus on. A real root has norm

lo> = (o) > 0, while an imaginary root has norm < 0. In the
affine case, the imaginary roots are nd with 0 #n € Z, and
these are isotropic: (6/5) = 0.

Lemma (Proved in Lecture 6)

If s; is the simple reflection corresponding to the simple root «;
and if o is a positive root then either s;(«) is positive or « = «;
and s;(a) = —«;.




The Weyl group
0e000000

Imaginary roots

This was proved in Lecture 6. Now we deduce some
implications.

Proposition

If « is a positive imaginary root so is w(«) for any o« € W.

For affine root systems, if « is an imaginary root nd then

w(a) = o for all w € W. This is not true for other Kac-Moody
root systems, but at least we know that the positive imaginary
roots are permuted by the Weyl group. This follows from the
Lemma, since «; is not an imaginary root.
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The length function on W

We now define the length function on the Weyl group. If w e W
let

tw) =Haxe @ w ' (x) e @Y.

Note that this also equals {ox € @ |w(x) € @~ }| since
o — —w ! («) is a bijection

{aedw Ha)ed} — {aedHwa)ed ).

Thus (w) = ¢(w™!).

Proposition

We have

0 [ ww)+ 1 ifw (o) € O,
) = Uw) — 1 ifw (o) € D
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Proof

To prove this, suppose that w—!(«;) € ®*. Then it is easy to
show that

{ae O |sw(a) € D} ={ox € DT w(x) € D TU{w (o)}

and this union is disjoint. For example, to show that the
left-hand side is contained in the right, assume that

siw(a) € @~ but w(x) ¢ ®@—. Then since «; is the only element
of ®* mapped to @~ by s; we have w(x) = «; and so « is
indeed contained in the right-hand side. We leave the other
inclusion to the reader.

This shows that if w—!(o;) € @ then {(s;w) = (w) + 1. To
prove the other inclusion, interchange the roles of w and s;w,
and apply the case just proved to s;w.
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Functorialty of reflections

Let «; and «; be simple roots, w € W. lfw(«;) = «; then
ws,-w_1 = Sj.

We make use of the definition s;(x) = x — («, x) ;. SO

wsiw ™! (x) = wlw ™ () — (o, w ! (x)) o))

=x— (w(o’

), x)w(og) =x — <oc}/,x)ocj = s;(x).



The Weyl group
[e]e]e]ele] lele]

Discarding redundant elements of a decomposition

It is known that Kac-Moody Weyl groups are Coxeter groups.
We won'’t prove that but the following Proposition is a
well-known property of Coxeter groups

Proposition

Suppose w = s;, - - -s;, and £(w) < k. Then there exists
1 <m < n <k such that
W:sil S‘l ...S'l-n...sl-k’

m

where the hats mean the two elements are omitted.

Let m be the largest integer such that £(s;,,, ---s;,) =k —m.
Then {(s;, - --si,) # k—m+ 1, so by the Proposition
(s, ---s;) =k—m—1and (s;, ., ---si)" (oc,m) c .
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Proof (continued)

Now let n be the smallest integer such that

(Sim+l .- -sin)’l(ocim) € ®. Then (Sim+1 .- -sinfl)*l(ocim) cdt.
Then B = (s;,., s, )" '(«;,) is a positive root such that s;, ()
is in @~. There is a unique such positive root, and so 3 = «;,.
Now by the Lemma

—1
(sim+1 e sinfl) Sim (sim+l T Sinfl) = Sin'
This implies that

sil...sik:sil...sim..

.sin...sik‘
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Reduced decompositions

If w e W we may write it as a product of simple reflections:
W =S8 "S-
If this decomposition is as short as possible, it is reduced.

Proposition

The length {(w) is the number of elements in a reduced
expression.

Letw =s;, ---s; be areduced decomposition of w. Since
L(siw) = L(w) £ 1 < L(w) + 1 itis clear that {(w) < k. We must
prove the converse. Letw =s;, - - -5;, be any expression for w,
reduced or not. If k¥’ > ¢(w) the last Proposition shows that we
may discard elements 2 at a time, until we arrive at an
expression of with < £(w).
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Primitive vectors

We recall the definition from Lecture 5.

Definition

Let V be a module with a weight space decomposition. If is a
weight of V, a nonzero vector v € V(u) is called a primitive
vector if there exists a submodule U of V such that v ¢ U but
e;v € U for all i.

Particularly, if e;(v) = 0 for all i, then v is a primitive vector.
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Functoriality properties of primitive vectors

Lemma
Let

00—V HvEV"—0
be a short exact sequence in Category-0.
(i) If v/ is a primitive vector in V' then i(v') is a primitive vector in
V.
(i) If v"" is a primitive vector in V"' and v € V is a preimage of v’
then v is a primitive vector in'V.
(iii) If v is a primitive vector in V then eitherv = i(v') where v’ is
a primitive vector in V', as in (i), or p(v) =v"" is a primitive
vector in V"

The proof is straightforward from the definition of a primitive
vector.
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A module is generated by primitive vectors

Proposition

Let V be a module in Category O. ThenV is generated by its
primitive vectors.

Let U be the submodule of V generated by its primitive vectors
and let W = V/U. If W is nonzero, let 1 be a weight that is
maximal with respect to = such that W,, # 0. If u is a nonzero
vector in W, then obviously « is a primitive vector in W so if v is
a preimage in V, then v is a primitive vector that is not in U,
which is a contradiction.
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Input from the Casimir operator

Proposition

Let V be a highest weight module with highest weight A. Then
the Casimir element Q) acts by the scalar
(A +2pA) = [A+p[>—[[0*| on V.

This was proved in Lecture 6.
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Subquotients

If U and V are modules in Category O we say U is a subquotient
of Vif V has submodule 0 C V; C V, C Vsuchthat U = V,/V;.

Proposition

LetV and U be highest weight modules with highest weights A
and u, respectively. Suppose U is a subquotient of V. Then
A+ o> = ln+ 02| and p < A.

Since Q acts by the scalar ||A + p||* — ||p||* on V, it acts by the
same scalar on any subquotient. Thus

N+ oI — llp]l2 = [+ pl2 — [[p]I2. Moreover writing U = V2/V,
for Vi Cc V, C V, the module V, has a vector of weight u and so
Vi # 0, which implies p < A.
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A completion

Recall that A € h* is an integral weight if all («’,A) € Z. The
integral weights form the weight lattice P. If furthermore all
(o, A) > 0, then A is called a dominant weight. The dominant
weights form a cone Pt C P.

Let € be the free abelian group on P; if A € P we will denote ¢*
the corresponding basis element. We wish to consider a
completion & that will contain the characters of representations
of Category O. If f = ) aye* € € let supp(f) = {play # 0}. We
will say a sequence {f,} with f,, € € converges to 0 if for any

A € Pthereis an N such thatif n > N and u = A then

1 & supp(fy).
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The character

With this topology, the completion ¢ contains (for example)

o
e
n=0
if « is a positive root and
[ee)
S e = (1— ).
n=0

If V is a module in Category O, then we may define the
character
ch V= Z dim(V,,)e"
08

and this series is convergent in &.
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The character of an irreducible

We proved that if A € P* then L(A) is an integrable
representation, so its character

is invariant under the Weyl group W.
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The character of a Verma module

The other thing we know is the character of Verma module:
ch MA) =e* J] (1—e )"
xed+

Formally, this is because if vy € M(A) is a highest weight vector,
then the map U(n_) — M(A) in which & € U(n_) maps to
& - vy is a vector space isomorphism, and the character formula

U ) =] Y et = T] (1-e)

& ky=0 xed*

follows from the PBW theorem.
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The Kac-Weyl Character formula

A proof of the Weyl character formula for a finite-dimensional
simple Lie algebra g was given by Bernstein, Gelfand and
Gelfand using Category O methods. Kac adapted their method
to the symmetrizable Kac-Moody case. Critical input comes
from the center of the universal enveloping algebra. While BGG
used the entire center, Kac showed that for the generalizationof
the Weyl character formula to the infinite-dimensional case,
only the Casimir element is really needed.

Web link:

BGG: Category of g-modules from Joseph Bernstein’s home page


http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-2.pdf
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Restriction to finite-dimensional Lie algebras

In this section we will assume that g is a finite-dimensional
simple Lie algebra. In this case, the Cartan matrix A is positive
definite, and it follows that the inner product ( | ) on b, or
equivalently on b* is positive definite.

Proposition

Let g be a finite-dimensional simple Lie algebra and V a highest
weight module with highest weight \. Then V has finite length.
That is, it has a composition series

o=VycCcVicCc---CV,=V

where the quotients V;/V;. are irreducible. Moreover each
Vi/Viy1 = L(w;) with w; < A and

i + pll = [|A; + p|-
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If V is a nonzdero module in Category O then V has a maximal
proper submodule. We proved this in Lecture 1 if V is a highest
weight module, and it is not to hard to generalize the argument.

Let V? = vV and let V! be a maximal proper submodule of V; let
V? be a maximal proper submodule of V', and so forth. Thus
we have a chain

v=vV'oviovio

with quotients V/Vi*! irreducible, and we need to know that it
terminates. The subquotients V//Vi*+! are irreducible so they
are of the form L(y;), and from what we have already proved,
I + p|? = ||A + p||%. Now since g is a finite-dimensional simple
Lie algebra the form ( | ) is positive definite there are only
finitely many possible ;.
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Proof (concluded)

Furthermore V,,, is finite-dimensional, so the number of
subquotients is bounded by

Z dim(V,,) < oo.
HiEh*
[ wi+el>=[A+p|?
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The transition matrix

We apply this to Verma modules and write

ch M(A) = Z dy, ch L(p).
u=<A
lu+pl2=lIA+pl?

Here d ,, is the number of times L(p) occurs among the
composition factors of M(A). The matrix d, ,, of nonnegative
integers is triangular in the sense that

day =1, dy,n =0unless n < A.

This implies that it is invertible.
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Expansion in Verma characters

Inverting the transition matrix, we may write

ch L(A) = Z ca,uch M(u)
H<A
lutellP=[A+pl?

for ca . € Z, with
aoa=1, e =0unless u < A

Then remember that the map U(n_) — M(A) in which
& — & - vy is anisomorphism (with v, the highest weight
vector). Using the PBW theorem this gives

ch M(u —e“H (1—e ).
xed+
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The Weyl denominator

Now let us introduce the Weyl denominator

A =eP H (1—e™%).

xedt

Ifwe W thenw(A) = (—1)tWA,

It is enough to prove this for simple reflections so assume
w = s;. Write

A=eP(l—e ™) H (1—e ).

xe®d*t
oA K
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Proof (continued)

Since s; permutes the factors in the product,

silA) =P (1—e %) [ (1—e™*) =P N(1—e*) J] (1—e™ %)
xed®@* xedt
A aF o

which equals —A.
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Back to the character

Now we may write:

ch L(A) = Z ca,uch M(u)
H=<A
lutellP=[A+pl?

= Z ca et H (1—e %)7!

[TEON xed+
utel>=lA+pl
=A"! E cauettP.
u=A

lu+el>=lIA+pl

We may learn something about the c, ,, from the W-invariance
of L(A) and anti-invariance of A
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Using the W-invariance of L(})

Since A € P, ch L(A) is invariant under W and A is
anti-invariant:

A7l E ca et tP

p=A
lutellP=lA+pl?

= (—1)tA—! Z CA ueW(qup]'
LA
+pl>=[A+pl?

Making the variable change u— w(pu+p)—p=w-pn

£(w)

C)\yp' = (—1) w c7\7W‘M'
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Using information from the Casimir element

Proposition
Ifcx, # 0 thenw - u= A forsomew € W. We have

eawr = (—1)1),

Findwsothatw(nu+p) e PT. Letuw/ =w-p=w(n+p) —p.

Then cj v = %ca,w #0so 1’ < A and
0"+ el = wle + p)I* = [l + pl* = A + o>
From the identity ||a||> — ||b||* = (a + bla — b) we have

A+ ol = [0+ pl* = A+ wl+ p) + pIA — ).
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Proof (continued)

Now A and w(u + p) are both dominant, so A + w(u+p) + p is
strongly dominant in the sense that

A+w(pn+p) +plog) >0

for all simple roots «;. Since A — ' = 0 we may write
A—u' =3 ko; where k; > 0. Thus the identity

IA+pl? — " +pl* =0

implies all k; = 0 and hence n' = A.
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The Weyl character formula

Theorem (Weyl Character Formula)

Suppose that g is a finite-dimensional simple Lie algebra and A
is a dominant weight. Then

ch L(A -1 Z wiAte)

wew
Indeed, we already proved
ch L(A) =A"! > ex et
pn=A

[ntellP=lA+el?

However we also proved that the only u that appear in the
summation are those of the formp=w-Aso u+ p = w(A + p),
and for these ¢y, = (—1)*")
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An approximate composition series

Now we turn to the Kac-Moody case. The arguments must be
modified, but only slightly.

Proposition (Lemma 9.6 in Kac)

LetV be in Category O and letv € b*. Then V admits a partial
composition series with respect to v, meaning a filtration

0O=VWwWcCcVvV,c---CV,=V

such that each quotient V;/V;_, is either = L(y;) for some
W =v,orelse (Vi/Vi_i)y =0 forallpn = v.




The Kac-Moody case
[e] Jelelele]ele]e)

Proof (continued)

To prove this, we argue by induction on

a(V,v) = Z dim V.

pi=v

If a(V,v) # 0 then we may choose a maximal weight

n € supp(V) such that V, # 0. Then e;u =0 forall i so a
nonzero v € V,, generates a highest weight module U. Then U
has a maximal proper submodule U’ (Lecture 1) and

U/U’ = L(u). Thus we have

oOcU cUcvV

and a(U’,v), a(V/U,v) are strictly smaller than a(V,v). By
induction these modules have partial composition series with
respect to v, and patching these together we obtain the result.
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The Kac-Weyl character formula

Generalizing the Weyl character formula:

Theorem (Kac (see Chapter 10))

Suppose that g is a finite-dimensional simple Lie algebra and A
is a dominant weight. Then

ch L(A —1l Z w(A+p)

wew

We recall how we argued for the finite-dimensional case. The
first step was to note that the composition series for M(A) all the
irreducible subquotients were of the form L(i) where u < A and
I+ ol = A+ p]]?, s0

ch MAN) = > day ch L(p.
VE
IntolP=A+ol?



The Kac-Moody case
000800000

Adapting the argument

In the Kac-Moody case, this identity is also true, except that the

sum may be infinite. To prove it, define [M(A) : L(u1)] to be the

number of times L(ui) appears as a subquotient in the partial

composition series for any v < . This is easily seen to be

mdependent of v. Since L(u) is a subquotient of M(A) we have
<Aand [[u+p[? =]+ p|* and

ch MA) = Y [M(A):L(w)] ch L{w).
H=A
IutellP=IA+o]?

The remainder of the proof is the same as in the
finite-dimensional case.
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Primitive vectors in /(0)

In this section we will prove:

Proposition
Let g be a Kac-Moody Lie algebra with Weyl group W. For any
w € W, M(0) has a primitive vector of weight w(p) — p.

This is Exercise 10.3 in Kac. If W is infinite, the result shows
that the M(0) has an infinite number of primitive vectors. So it is
not a module of finite length.
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An expression for p — w(p)

We have

xe®+t
wl(x)ed—

This can be proved by induction on ¢(w). If w = 1 both sides are
0. If the identity is true for w then we will prove that it is true for

s;w, where s;w > w. We have
p—swp = (p—sip) +si(p —wp) = o; +5i(p — wp)

and since («, p) = 1 we have s;p = p — (&, p)&x; = p — ;.
1 1
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Proof (continued)

So

&; + i Z o

axe®t
wl () e®™

It is not hard to check that
{x e @F|(siw) e @} ={} U {sizlw 'x € ®}
and that the union is disjoint, so have proved the formula.

Now we may prove the proposition. We will find primitive
vectors v,,,—, €ach of weight wp — p that are primitive in the
strong sense that e;(v,,,—,) = 0 for all i. If w =1 we may take v
to be the highest weight vector, so suppose that v,,,—, is
constructed and suppose £(s;w) > £(w). We will construct

Verwn—o -
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Proof (continued)

We need to know that

(o, wp —p) = 0.

Indeed this equals
<0€>/,Wp> - (OCZ-\/, p> = <OC,-\/,WP> — 1.

Since wp € P (the weight lattice) (., wp) € Z and we need to
show that it is positive. This equals (w—!(«), p) and w!(«;) is
a positive root since {(s;w) > £(w). So w™!(«;”) is the coroot
associated with a positive root and its inner product with p is

positive.
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Use of SL(2) theory

Let k = (o, wp — p) = 0 and let vsuwp—p = Vp—p.

We will show that vy, is a primitive vector. By the SL(2)
theory e;vy,p—p = ef i yp—p = 0. Also e;ff v, = 0 since
eifi = 0. Hence v,,,—, is a primitive vector of weight s;wp — p.
Its weight is

wp—p—oi =wp—p— (o), wp —p) —

silwp —p) — (p —sip) = siwp — p,

as required.
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