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The invariant inner product and the Casimir operator

The text for today’s lecture is Kac, Chapter 2. We will construct
an invariant bilinear form ( | ) on a Kac-Moody Lie algebra, then
apply it to construct the important Casimir operator on
representations of Category O, and prove facts about it that
lead to a proof of the Kac-Weyl character formula for characters
of integrable highest weight representations.

For example, the Casimir operator acts on irreducible highest
weight representations as a scalar, which we can compute.
This will be of use in locating primitive vectors, among other
things.



The finite-dimensional case The Kac-Moody inner product The Kac-Moody Casimir operator

The center of U(g)

Let us start with a finite-dimensional semisimple Lie algebra g
of rank r. The center of U(g) acts by scalars in any irreducible
module. Harish-Chandra proved that Z(U(g)) is a polynomial
ring in r variables. The generator of lowest degree is the
Casimir element, of degree 2.

If g is the Lie algebra of a Lie group G, the Lie algebra g can be
understood as vector fields on G. Since we can differentiate
along a vector field, they are linear differential operators. So
U(g) can be understood as the ring of all differential operators
that are invariant under left translation. Its center Z(U(g)) is the
ring of differential operators invariant under both left and right
translation.
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The Casimir operator

Let ( | ) be an invariant bilinear form on g, which must be the
Killing form up to normalization. Let Xi be a basis of g and let Yi

be the dual basis. Then we may define

Ω =

dim(g)∑
i=1

XiYi ∈ U(g).

Proposition
The definition of Ω is independent of the choice of basis Xi, and
Ω ∈ Z(U(g)).
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Proof

We omit the verification that Ω is unchanged if we change
basis. To check that Ω is central, suppose that T ∈ g and write

[T,Xi] =
∑

j

cijXj, [T,Yj] =
∑

i

dijYi

We have
([T,Xi]|Yj) =

∑
k

cik(Xk|Yj) = cij,

and similarly
(Xi|[T,Yj]) =

∑
dij.

Since the form ( | ) is invariant, ([T,Xi]|Yj) = −(Xi|[T,Yj]). Thus
cij = −dij. Now

[T,Ω] =
∑

i

[T,Xi]Yi +
∑

Xi[T,Yi] =
∑

cijXjYi + djiXiYj = 0.
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Weight spaces dually paired by ( | )

Proposition
Let g be a Lie algebra with a maximal abelian subgroup h.
Assume that g has a weight space decomposition

g =
⊕
α∈h∗

gα.

Assume that ( | ) is an invariant bilinear form. Then if X ∈ gα
and Y = gβ we have (X|Y) = 0 unless α = −β.

Indeed, if H ∈ h we have

α(H)(X|Y) = ([H,X]|Y) = −(X|[H,Y]) = −β(H)(X|Y),

so if (X|Y) 6= 0 we must have α(H) = −β(H).
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The isomorphism ν : h→ h∗

It will be useful to describe Hα (for all positive roots α) another
way. There is a homomorphism ν : h −→ h∗ associated to the
inner pairing ( | ) by

〈H,ν(H ′)〉 = (H|H ′), 〈H, λ〉 = λ(H) = (H|ν−1(λ)).

We may then define an inner product on h∗ by requiring ν to be
an isometry. That is,

(ν(H)|ν(H)) = (H|H ′).
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The scalar value of Ω

Our goal is to prove:

Theorem
Let V be an irreducible finite-dimensional module of the
finite-dimensional simple Lie algebra g with highest weight
λ ∈ h∗. Then Ω acts on V by the scalar (λ|λ+ 2ρ).

To prove this we will first describe dual bases of g. When α is a
root, Xα (= gα) is one dimensional, and if the basis {Xi} of g is
chosen so that each vector Xi lies in a root space, there will be
one vector in each Xα and r vectors in g0 = h. Let us denote
the vectors in Xα by Xα, and the vectors in h by Hi.
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Normalizations

It will be convenient to adjust the Xα so that (Xα|X−α) = 1.
Also, the form ( | ) restricts to a nondegenerate pairing of h, so
let Hi be the dual basis of h such that (Hi|Hj) = δij.
Now our dual bases Xi and Yi of g may be chosen to be
{X−α,Hi} and {Xα,Hi}. Thus the Casimir operator is

Ω =
∑
α∈Φ

X−αXα +

r∑
i=1

HiHi.

We will also denote Hα = [Xα,X−α].
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Computation of Hα

Lemma

We have Hα = ν−1(α).

To check this, we use the fact that the inner product ( | ) is
invariant. We have

(H|[Xα,X−α]) = ([H,Xα]|X−α) = α(H)(Xα|X−a) = α(H).

Now by the definition of ν, this proves that
Hα = [Xα,X−α] = ν

−1(α).
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Another version of Ω

Now we may rewrite

Ω =
∑
α∈Φ

X−α · Xα +

r∑
i=1

HiHi

It is useful to write this in another form using

[Xα,X−α] = Hα = ν−1(α)

by the Lemma, and applying this to those α that are negative
roots:

Ω =
∑

α∈Φ+

2X−α · Xα +

r∑
i=1

HiHi +
∑

α∈Φ+

[Xα,X−α]

or:

Ω =
∑

α∈Φ+ 2X−α · Xα +
∑r

i=1 HiHi + 2ν−1(ρ).
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Proof of the Theorem

This form is useful since it allows us to prove the Theorem, by
computing the eigenvalue of Ω in an irreducible representation
Vλ of highest weight λ.

Let vλ ∈ Vλ be the highest weight vector. Then Xαvλ = 0 for
every positive root, while if X ∈ h we have Hvλ = λ(H)vλ. So

Ωvλ = cvλ, c =

r∑
i=1

λ(Hi)λ(Hi) + 2〈ν−1(ρ), λ〉

Noting 2〈ν−1(ρ)|λ〉 = 2(λ|ρ), the theorem will follow from:

Lemma
If λ,µ ∈ h∗ then

r∑
i=1

λ(Hi)µ(Hi) = (λ|µ).
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Proof (continued)

To prove this start with the formula (for H,H ′ ∈ h):

(H|H ′) =
∑

i

(H|Hi)(H ′|Hi).

Indeed we have the orthogonal expansion

H =
∑

(H|Hi)Hi.

Then we take the inner product of this expression of H ′. Now
we have

(λ|µ) = (ν−1(λ)|ν−1(µ))

=
∑

i

(ν−1(λ)|Hi)(ν
−1(µ)|Hι) =

∑
i

λ(Hi)µ(Hi),

proving the Lemma.
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Symmetrizability

Kac proved the existence of a nondegenerate invariant bilinear
form on g. We start by constructing the pairing on h, then show
that it may be extended to g. Recall that symmetrizable means
that if A is the Cartan matrix is of the form DB where D is
diagonal and B is symmetric.

The symmetrizable case is no harder than the symmetric case.
However we will assume in today’s lecture that A is symmetric
just to eliminate some minor bookkeeping. See Kac Chapter 2
for the general case.
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The inner product on h

Recall that g = g(A) has generators consisting of all of h and
ei, fi that satisfy

[ei, fj] = δijα
∨
i , [h, ei] = 〈h,αi〉ei, [h, fi] = −〈h,αi〉fi.

We may define a symmetric bilinear form ( | ) on h by

(α∨
i |h) = 〈h,αi〉.

Note that
(α∨

i |α∨
j ) = aji

is symmetric. This does not completely determine the form ...
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Finishing the inner product on h

Let h ′ =
∑

Cα∨
i and let h ′′ be a complementary subspace to h ′

in h. Then we may complete the characterization of ( | ) by
requiring that (h ′′|h ′′) = 0.

It is easy to check (since the αi and α∨
i are both linearly

independent) that ( | ) is nondegenerate on h.
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The inner product on g

We have a vector space isomorphism ν : h −→ h ′ determined
by the formula

〈h,ν(h ′)〉 = (h|h ′).

Since (h|α∨
i ) = 〈h,αi〉, this implies that

ν(α∨
i ) = αi.

Theorem (Theorem 2.2 in Kac)
We may extend ( | ) to an invariant bilinear form on g. The form
is nondegnerate and satisfies

[x, y] = (x|y)ν−1(α)

if x ∈ Xα, y ∈ X−α.
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The Z-grading

We make use of the principal Z-grading

g =
⊕
j∈Z

gj

where g0 = h, g1 is the span of the ei, and g−1 is the span of the
fi, and the remaining gk are determined by the requirement that

[gi, gj] ⊆ gi+j.

Thus

h = g0, n+ =

∞⊕
i=1

gi, n− =

∞⊕
i=1

g−i.

Now let

g(N) =

N⊕
j=−N

gj.

Thus g is generated by g(1).
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The grading on generators

We will first define ( | ) on g(1). Note that ( | ) is uniquely
determined on g(1) by its restriction to h, and the required
properties that:

[x, y] = (x|y)ν−1(α).
(x|y) = 0 for x ∈ gα and y ∈ gβ unless β = −α.

The first property boils down to:

(ei|fi) = 1

because α∨
i = [ei, fi] = (ei|fi)α∨

i . Also note

(α∨
i |α∨

j ) = aij.
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A partial invariance property

Lemma
If x, y, z, [x, y], [y, z] ∈ g(1) then

([x, y]|z) = (x|[y, z]).

There are only a couple of cases to consider if x ∈ gα, y ∈ gβ,
z ∈ gγ where α,β,γ are either simple roots, negatives of simple
roots, or 0.

([ei, fi]|h) = (ei|[fi, h]): both sides equal (α∨
i |h) = 〈h,αi〉.

([ei, h]|fi) = (ei|[h, fi]): both sides equal −〈h,αi〉.
([fi, h]|ei) = (fi|[h, ei]): both sides equal 〈h,αi〉.

The remaining case with x, y, z ∈ g(1) are zero.
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Expanding the definition

Now we have constructed the invariant inner product on
g(1) = h⊕

⊕
Cei ⊕

⊕
Cfi. This is the base case for an

induction.

Lemma
Suppose there exists an inner product ( | ) defined on g(N − 1)
subject to the condition that

x, y, z, [x, y], [y, z] ∈ g(N − 1) ⇒ ([x, y]|z) = (x|[y, z]).

Then we may extend it to g(N) with the same property.
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The recursive definition

It is necessary to define (x|y) when x ∈ g(N) and y ∈ g(−N). We
assume that x, y are homogenous, that is, lie in weight spaces.
We may write y =

∑
i[ui, vi] where ui and vi are in g(N−1) and

are homogeneous. Then we define

(x|y) =
∑

i

([x, ui]|vi).

Note that [x, ui] is homogeneous since x, ui are. It is understood
that since vi ∈ g(N − 1), the term ([x, ui]|vi) is interpreted as zero
if [x, ui] is not in g(N − 1).

It must be checked that this expression is well-defined,
independent of the decomposition y =

∑
[ui, vi].
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An alternate expression proves ( : ) well-defined

We make an alternative expansion x =
∑

j[sj, tj]. We will prove

([[sj, tj], ui]|vj) = (sj|[tj, [ui, vi]]).

Using the Jacobi identity and the induction hypothesis (which is
applicable since sj, tj, ui, vi ∈ g(N − 1)) we

([[sj, tj], ui]|vi) = ([[sj, ui], tj]|vi) + ([sj, [tj, ui]]|vi)

= ([sj, ui]|[tj, vi]) + (sj|[[tj, ii], vi])

(sj|[ui, [tj, vi]]) + (sj|[[tj, ii], vi]) = (sj|[tj, [ui, vi]]).

Thus ∑
i

([x, ui]|vi) =
∑

j

(sj|[tj, y]).

The independence of the definition (x|y) =
∑

i([x, ui]|vi) on the
decomposition y =

∑
i[ui, vi] follows from this expression.
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The end of the proof

One may check that the induction hypothesis is satisfied for this
extension, that is:

x, y, z, [x, y], [y, z] ∈ g(N) ⇒ ([x, y]|z) = (x|[y, z]).
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Formulaire (symmetric case)

[ei, fj] = δijα
∨
i , [h, ei] = 〈h,αi〉ei, [h, fi] = −〈h,αi〉fi.

[x, y] = (x|y)ν−1(α), x ∈ gα, y ∈ g−α

ν(α∨
i ) = αi, 〈h,ν(h ′)〉 = (h|h ′), (α∨

i |h) = 〈h,αi〉.
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Formulaire (symmetrizable case)

A = DB, D = diag(ε1, · · · , εn), B = (bij) symmetric

[ei, fj] = δijα
∨
i , [h, ei] = 〈h,αi〉ei, [h, fi] = −〈h,αi〉fi.

[x, y] = (x|y)ν−1(α), x ∈ gα, y ∈ g−α

ν(α∨
i ) = εiαi, 〈h,ν(h ′)〉 = (h|h ′), (α∨

i |h) = εi〈h,αi〉
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First definition

Now let us develop the Casimir element in the Kac-Moody
case. It is not to be an element of U(g), though it can be
defined for a completion of U(g). Instead, as in Chapter 2 of
Kac’ book, the Casimir element will be an operator that can be
defined for representations of Category O.

In the Kac-Moody case some spaces gα = Xα may have
dimension > 1 so we should choose a basis X(t)

α such that that
X(t)
−α is to be the dual basis and formally write:

Ω =
∑
α∈Φ

dim(Xα)∑
t=1

X(t)
α · X(t)

−α +

r∑
i=1

HiHi.

(For real roots Xα will be one-dimensional, but for imaginary
roots the dimension may be > 1 as in the affine case.)
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Modified definition

This form is not useful but the modified version

Ω =
∑

α∈Φ+

dim(Xα)∑
t=1

X(t)
−α · X

(t)
α +

r∑
i=1

HiHi + ν−1(ρ)

works well.

So let us write

Ω = Ω0 +

r∑
i=1

HiHi + ν−1(ρ), Ω0 =
∑

α∈Φ+

dim(Xα)∑
t=1

X(t)
=α · X(t)

α .
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Why it works

Lemma
Let V be a representation in Category O and let v ∈ V. Then
X(t)
α v = 0 for all but finitely many α.

By definition of Category O there are a finite number of
λ1, · · · , λN ∈ h∗ such that if Vµ 6= 0 then µ 4 λi for some i. For
example if V is a highest weight representation with highest
weight λ we may take N = 1 and λ1 = λ.

Now let v ∈ V have weight µ. Then Xαv has weight µ+ α.
There are only a finite number of positive roots α such that
µ+ α 4 λi, so Xαv = 0 for all but finitely many α. Thus the sum∑

X−αXαv is actually finite.
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Normal ordering

In physics one encounters the notion of “normal ordering”
which may be summed up with the admonish to perform
annihilation operators before creation operators. In physics the
operators are applied to a Hilbert space representing the state
of a physical system and there are operators that create or
annihilate particles. Normal ordering is the procedure of always
applying annihilation operators before creation operators. This
allows one to work with series that would otherwise be
divergent. Normal ordering is also a source of the central
extensions of infinite-dimensional Lie algebras that often pop
up. In the context of representations in Category O, the
operators Xα with α ∈ Φ+ are annihilation operators, and the
operators X−α are creation operators, writing Ω this way is a
perfect example of normal ordering.
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Normal ordering (continued)

The operator Ω0 makes sense applied to any vector in a
representation V in Category O, since the sum

∑
X(t)
−αX(t)

α v has
only finitely many nonzero terms. Hence the Casimir operator is
defined.

In Category O we may think of Xα as an annihilation operator if
α is a positive root, and as a creation operator when α is a
negative root. So when we write

Ω0 =
∑

α∈Φ+

dim(Xα)∑
i=1

2X(i)
−α · X

(i)
α ,

this is an example of normal ordering.
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si permutes Φ+ − {αi}

Lemma
Let si be a simple reflection. If α is a positive root, then
si(α) = −α if α = αi; otherwise si(α) is positive.

To prove this we note that the positive roots are the weight
spaces in n+. It is spanned by elements of the form

[ei1 [ei2,[ei3 , · · · , [eik−1 , eik ]]]].

From this description, the positive roots have the form

α =

r∑
j=1

kjαj

where (k1, · · · , kr) is a tuple of nonnegative integers.
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Proof (continued)

The weight kαi is only a root if k = 1, because [αi,αi] = 0, so if
the above expression has all i1, i2, · · · = i we must have k = 1.
Now apply si to

∑
kiαi to obtain

si(α) =
∑

kjαj − 〈α∨
i ,α〉αi =

r∑
j=1

k ′jαj

where k ′j = kj if j 6= i. If α 6= αi at least one kj = k ′j is positive, so
si(α) cannot be a negative root.
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The Weyl vector

Now let us consider the Weyl vector ρ = 1
2

∑
α∈Φ+ α, which we

treat as a divergent sum to be renormalized. Since si sends αi

to −αi and permutes the remaining positive roots, we have
(formally) si(ρ) = ρ− αi. Remembering that

sα(x) = x − 〈α∨, x〉α

we need ρ to be an element of the weight lattice P such that

〈α∨
i , ρ〉 = 1 for simple roots αi.

This does not quite fully characterize ρ since the α∨ do not
span h in the Kac-Moody case. However this is the only
property that we need ρ to have. We choose ρ ∈ h∗ to be a
fixed element with this property.
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What we will prove

We may now state our goals. For representations of Category
O :

We will prove that Ω commutes with the action of the ei

and fi.
Therefore it acts as a scalar on irreducible representations.
For highest weight representations we may compute this
scalar.
This will contain enough information to help prove the
Kac-Weyl character formula.
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Invariance of each weight space

Lemma
If V is a representation of Category O, then Ω(Vµ) ⊆ Vµ for
every µ ∈ h∗.

Indeed each of the three terms Ω0,
∑

HiHi and 2ν−1(ρ) has
this property. For Ω0 = 2

∑
X−αXα note that Xα maps Vµ into

Vµ+α, then X−α maps Vµ+α into Vµ.
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Ω commutes with the action of ei, fi

We defined (|) as an inner product on h before extending it to g.
We also defined an isomorphism ν : h→ h∗ by
〈H ′,ν(H)〉 = (H ′|H). We then defined an inner product on h∗ by
(λ|µ) = (ν−1(λ)|ν−1(µ)).

Theorem
Let V be a g-module in Category O. Then the action of Ω
commutes with the action of ei and fi.

We will give a proof that is different from that in Kac’ book. Let S
be a subset of Φ ∪ {0} such that if α ∈ S and α+ αi ∈ Φ ∪ {0}
then α+ αi ∈ S. We assume that all but finitely many elements
of S are positive roots. Let

gS =
⊕
α∈S

gα, gS =
⊕
α∈S

g−α.
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Proof

The spaces
gS =

⊕
α∈S

gα, gS =
⊕
α∈S

g−α.

are dually paired under ( | ) so let Xt be a basis of gS and Xt be
the dual basis of gS. Define

ΩS =
∑

t

XtXt.

We will prove that ei commutes with ΩS. Since all but finitely
many of the Xt are in n+, this makes sense as an operator on V.

Note that [ei, g
S] ⊆ gS and [ei, gS] ⊆ gS. We write

[ei,Xt] =
∑

u

ctuXu, [ei,Xt] =
∑

u

dtuXu.
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Proof (continued)

Using the fact that Xu is the dual basis of Xt

ctu = ([ei,Xt]|Xu), dtu = (Xu|[ei,Xt]).

Since ( | ) is invariant, we have ctu = −dut. Now[
ei,

∑
t

XtXt

]
=

∑
t

[ei,Xt]Xt +
∑

t

Xt[ei,Xt].

This equals ∑
t,u

ctuXuXt +
∑
t,u

dtuXtXu = 0.

We have proved that [ei,ΩS] = 0.

We will apply this twice.
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Proof (continued)

Let S1 := Φ+ − {αi} and S2 := {αi, 0,−αi}. We see that ei

commutes with

ΩS1 =
∑

α∈Φ+

α6=αi

∑
j

Xj
−αXj

α, ΩS2 = X−αiXαi +XαiX
αi +

∑
j

HjHj.

Since XαiX−αi = X−αiXαi + α
∨
i we have

Ω = ΩS1 +ΩS2 + (2ν−1(ρ) − α∨
i ).

So we have only to check that ei commutes with 2ν−1(α) − α∨
i .
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Proof (concluded)

Indeed

[2ν−1(ρ) − α∨
i , ei] = 〈2ν−1(ρ) − α∨

i ,αi〉ei = 0

since 〈α∨
i ,αi〉 = aii = 2 while 〈ν−1(ρ),αi〉 = 1 because using

the properties in the Formulaire

1 = 〈α∨
i , ρ〉 = 〈α∨

i ,ν(ν−1ρ)〉 = (α∨
i |ν−1(ρ))

= (ν−1(ρ)|α∨
i ) = (ν−1(ρ)|ν(αi)) = 〈ν−1(ρ),αi〉

We have proved that Ω commutes with ei. A similar argument
will show that it commutes with the fi.
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The main theorem

Theorem
Suppose V is a highest weight representation with highest
weight λ. Then Ω acts as a scalar on V, with value (λ|λ+ 2ρ).

Let vλ be the highest weight vector. Since X(t)
α annihilates vλ we

have to compute the eigenvalue of∑
i

(HiHi) + 2ν−1(ρ)

on vλ. The calculations that show this is (λ|λ) + 2(λ|ρ) are
identical to the finite-dimensional simple case.


	The finite-dimensional case
	The Kac-Moody inner product
	The Kac-Moody Casimir operator

