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The invariant inner product and the Casimir operator

The text for today’s lecture is Kac, Chapter 2. We will construct
an invariant bilinear form (| ) on a Kac-Moody Lie algebra, then
apply it to construct the important Casimir operator on
representations of Category O, and prove facts about it that
lead to a proof of the Kac-Weyl character formula for characters
of integrable highest weight representations.

For example, the Casimir operator acts on irreducible highest
weight representations as a scalar, which we can compute.
This will be of use in locating primitive vectors, among other
things.
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The center of U(g)

Let us start with a finite-dimensional semisimple Lie algebra g
of rank r. The center of U(g) acts by scalars in any irreducible
module. Harish-Chandra proved that Z(U(g)) is a polynomial
ring in r variables. The generator of lowest degree is the
Casimir element, of degree 2.

If g is the Lie algebra of a Lie group G, the Lie algebra g can be
understood as vector fields on G. Since we can differentiate
along a vector field, they are linear differential operators. So
U(g) can be understood as the ring of all differential operators
that are invariant under left translation. Its center Z(U(g)) is the
ring of differential operators invariant under both left and right
translation.
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The Casimir operator

Let (| ) be an invariant bilinear form on g, which must be the
Killing form up to normalization. Let X; be a basis of g and let ¥;
be the dual basis. Then we may define

dim(g)

Q= ) XY, eU(g)
i=1

Proposition
The definition of Q is independent of the choice of basis X;, and
Qe Z(U(g)).
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Proof

We omit the verification that Q is unchanged if we change
basis. To check that Q is central, suppose that T € g and write

X)=) X,  TY=) dg¥i
Jj i

We have
([T, X|Y;) Zc,k XilY;) = ¢,

and similarly

X, v]) =) dy.

Since the form ( | ) is invariant, ([T, X;l|Y;) = —(Xil[T,Y;]). Thus
Cij = —d,'j. Now

[T,Q] = Z[T,Xi]Yi + ZXi[T, Yil = Z ¢;iXjYi + djiX;Y; = 0.

i



The finite-dimensional case
000080000000

Weight spaces dually paired by ( | )

Let g be a Lie algebra with a maximal abelian subgroup ).
Assume that g has a weight space decomposition

g= é}) Jo-

xeh*

Assume that ( | ) is an invariant bilinear form. Then ifX € g
andY = gpg we have (X|Y) =0 unless « = —f3.

Indeed, if H € h we have
o« (H)(X|Y) = (H,X]|Y) = —(X|[H, Y]) = —B(H) (X]Y),

so if (X]Y) # 0 we must have «(H) = —3(H).
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The isomorphism v :hH — h*

It will be useful to describe H,, (for all positive roots «) another
way. There is a homomorphism v : h — h* associated to the
inner pairing ( | ) by

(H,v(H")) = (HH'"),  (HA)=AH)=(Hr""'\).

We may then define an inner product on h* by requiring v to be
an isometry. That is,

(v(H)Iv(H)) = (HIH).
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The scalar value of Q

Our goal is to prove:

Let V be an irreducible finite-dimensional module of the
finite-dimensional simple Lie algebra g with highest weight
A € b*. Then Q acts on'V by the scalar (A\A + 2p).

To prove this we will first describe dual bases of g. When « is a
root, X4 (= g«) is one dimensional, and if the basis {X;} of g is
chosen so that each vector X; lies in a root space, there will be
one vector in each X, and r vectors in gy = h. Let us denote
the vectors in X by X, and the vectors in § by H;.
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Normalizations

It will be convenient to adjust the X so that (Xy|X_«) = 1.
Also, the form ( | ) restricts to a nondegenerate pairing of b, so
let H' be the dual basis of h such that (H;|H') = §;;.

Now our dual bases X; and Y; of g may be chosen to be

(X_«, H;} and {X, H'}. Thus the Casimir operator is

Q=) X oX« +ZHH’

xed

We will also denote Hy, = [Xo, X_&l.
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Computation of A

We have H, = v~ («x).

To check this, we use the fact that the inner product ( | ) is
invariant. We have

(H|Xx,X_ol) = ([H, X JIX_«) = «(H)(Xo|X_,) = «(H).

Now by the definition of v, this proves that
Hy = KXo, X_od = v 1 (x).
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Another version of QO

Now we may rewrite

Q=) X o Xa+t ZHH’
xed
It is useful to write this in another form using
Xo. X o] =Hy = v (o)
by the Lemma, and applying this to those « that are negative
roots:

Q=) 2X_ o Xa +ZHH’+ > [Xen Xl

xed+ xed+
or:

’ Q= Z“eqyr 2X_o( - Xo + Z;:] Hl'Hi + 2\/71 (p) ‘
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Proof of the Theorem

This form is useful since it allows us to prove the Theorem, by
computing the eigenvalue of Q in an irreducible representation
V, of highest weight A.

Let v € V, be the highest weight vector. Then X, v, = 0 for
every positive root, while if X € h we have Hvy, = A(H)v). So

Qvy = cvy, c_ZA ANH) +2(v71(p),A)

Noting 2(v~'(p)|A) = 2(Alp), the theorem will follow from:

IfA,u € b* then
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Proof (continued)

To prove this start with the formula (for H, H’ € b):

(HIH') = ) (HIH;)(H'|H").

1

Indeed we have the orthogonal expansion
H=) (HH)H"

Then we take the inner product of this expression of H’. Now
we have
Alw) = (v v (W)
=Y (vV'NHE)THWIHY = ) AH)u(H),

proving the Lemma.
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Symmetrizability

Kac proved the existence of a nondegenerate invariant bilinear
form on g. We start by constructing the pairing on b, then show
that it may be extended to g. Recall that symmetrizable means
that if A is the Cartan matrix is of the form DB where D is
diagonal and B is symmetric.

The symmetrizable case is no harder than the symmetric case.
However we will assume in today’s lecture that A is symmetric

just to eliminate some minor bookkeeping. See Kac Chapter 2
for the general case.
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The inner product on §

Recall that g = g(A) has generators consisting of all of  and
e;, f; that satisfy

[eiafj"] - 6l](xz\/a Ul7 ei] - <h7 (Xl'>ei7 [hvﬁ] = _<h7 al>ﬁ
We may define a symmetric bilinear form ( | ) on b by
(o’ |h) = (h, ot;).

Note that
(Oi,-\/|06j\/) = aji

is symmetric. This does not completely determine the form ...
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Finishing the inner product on |

Leth’ = Y Ca and let h” be a complementary subspace to b’
in h. Then we may complete the characterization of ( | ) by
requiring that (h”|h”) = 0.

It is easy to check (since the «; and «;” are both linearly
independent) that ( | ) is nondegenerate on .
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The inner product on g

We have a vector space isomorphism v : h — b’ determined
by the formula
(h,v(R")) = (hlh").

Since (hle) = (h, ), this implies that

Theorem (Theorem 2.2 in Kac)

We may extend ( | ) to an invariant bilinear form on g. The form
is nondegnerate and satisfies

b, y] = (xly)v (o)

ifxeXq,yeX _q.




The Kac-Moody inner product
0000e00000000

The Z-grading

We make use of the principal Z-grading
1=Py
ez
where go = b, g; is the span of the ¢;, and g_, is the span of the
fi» and the remaining g; are determined by the requirement that

lgi, ;] C @i
Thus
[o0] o0
b = go, M:@Gi, n—ZEBG—i-
i=1 i=1
Now let

N
o) =P g

j=—N
Thus g is generated by g(1).
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The grading on generators

We will first define (| ) on g(1). Note that ( | ) is uniquely
determined on g(1) by its restriction to h, and the required
properties that:

@ [x,y] = (xly)v'(«).
@ (xly) =0forx € gy andy e gg unless p = —
The first property boils down to:

(eilfi) =1
because o’ = [e;,f] = (eilf;)o”. Also note

(ocivlocj\/) = ajj.
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A partial invariance property

Ifx,y,z,[x,y], [y, 2] € g(1) then

(b, ¥1lz) = (xl[y, z]).

There are only a couple of cases to consider if x € g,y € gg,

Z € gy Where «, 3,y are either simple roots, negatives of simple
roots, or 0.

(les, f1lh) = (eillf;, h)): both sides equal (o |h) = (h, ;).

(lei, hllf;) = (eillh, fi]): both sides equal —(h, «;).

@ ([fi, hlle;) = (fillh, e;]): both sides equal (A, «;).

The remaining case with x, y,z € g(1) are zero.
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Expanding the definition

Now we have constructed the invariant inner product on
g(1) =h @ @ Ce; @ @ Cf;. This is the base case for an
induction.

Lemma

Suppose there exists an inner product ( | ) defined on g(N — 1)
subject to the condition that

x5yl ydegWW—-1) = (lxyllz) = (+dly,2D).

Then we may extend it to g(N) with the same property.
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The recursive definition

It is necessary to define (x|y) when x € g(yy and y € g(_y). We
assume that x, y are homogenous, that is, I|e in welght spaces
We may write y = ) ;[u;, vil where u; and v; are in g(y_;) and
are homogeneous. Then we define

(xly) = Y (bx, willvi).

Note that [x, u;] is homogeneous since x, u; are. It is understood
that since v; € g(N — 1), the term ([x, u;]|v;) is interpreted as zero
if [x,u;] is notin g(N —1).

It must be checked that this expression is well-defined,
independent of the decomposition y = > [u;, vil.
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An alternate expression proves ( : ) well-defined

We make an alternative expansion x = 3 _[s;, ;1. We will prove
([lsj, ], willv;) = (sjllt), [z, vill).

Using the Jacobi identity and the induction hypothesis (which is
applicable since s;, tj, u;,v; € g(N — 1)) we

([Isj, 5], willvi) = (lsj, wil, ]lvi) + (Lsj, g7, willlvi)

= (Isj, wlllty, vil) + (slllt, 3, vil)
(sj|[ui7[tjyvi]])+( | tj7 ]) (sj|t]7 M”V]])

D (bulvi) = Y (sl D).
J

Thus

1

The independence of the definition (xly) = > _;([x, u;]lv;) on the
decomposition y = ) ;[u;, v;] follows from this expression.
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The end of the proof

One may check that the induction hypothesis is satisfied for this
extension, that is:

v,z kylydegV) = (Inyll) = (Hly, 2).
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Formulaire (symmetric case)

[eiaﬁ] — 5UO(1\/7 [hy ei] = <h7 (Xi>ei, [haﬁ] = _<ha “t>ﬁ
b@)’] = (x|y)v_l(o‘)7 XE€ 0o,y €9«

v(inY) = o, (h,v(h")) = (hlh"), (o) |h) = (h, &;).

1
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Formulaire (symmetrizable case)

A = DB, D = diag(ey,--- , €,), B = (b;;) symmetric
[eiaﬁ] = 5UO(1\/7 [hy ei] = <h7 (Xi>ei, [haﬁ] = _<ha “t>ﬁ
[X7Y] = (x|y)v_l(o‘)7 X€ 0,y € J—u

v(e') = eio;,  (h,v(h")) = (hh'), (0 |h) = €i(h, o)

1
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First definition

Now let us develop the Casimir element in the Kac-Moody
case. It is not to be an element of U(g), though it can be
defined for a completion of U(g). Instead, as in Chapter 2 of
Kac’ book, the Casimir element will be an operator that can be
defined for representations of Category O.

In the Kac-Moody case some spaces g, = X« may have
dimension > 1 so we should choose a basis X((X) such that that
X(_lx is to be the dual basis and formally write:

dim(X ) r
a=5Y Y x¢x",+> mH.
xed =1 i=1

(For real roots X, will be one-dimensional, but for imaginary
roots the dimension may be > 1 as in the affine case.)



The Kac-Moody Casimir operator
O®@00000000000000

Modified definition

This form is not useful but the modified version

dim (X

=3 Z X X8+ Y HH v (p)

xedt  t=l1 i=1

works well.

So let us write

dim (X )

,
Q=00+ HH +v'(p), Qo= Y > xU .xi.
i=1 xed®t  t=1
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Why it works

Let V be a representation in Category O and letv € V. Then
Xf,f)v = 0 for all but finitely many «.

By definition of Category O there are a finite number of

A1, -+, Ay € b* such that if V. # 0 then u < A; for some i. For
example if V is a highest weight representation with highest
weight A we may take N = 1 and A} = A.

Now let v € V have weight u. Then X, v has weight 1 + «.
There are only a finite number of positive roots « such that

L+ o < Aj, S0 Xov = 0 for all but finitely many «. Thus the sum
> X_«X«vis actually finite.
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Normal ordering

In physics one encounters the notion of “normal ordering”
which may be summed up with the admonish to perform
annihilation operators before creation operators. In physics the
operators are applied to a Hilbert space representing the state
of a physical system and there are operators that create or
annihilate particles. Normal ordering is the procedure of always
applying annihilation operators before creation operators. This
allows one to work with series that would otherwise be
divergent. Normal ordering is also a source of the central
extensions of infinite-dimensional Lie algebras that often pop
up. In the context of representations in Category 0, the
operators X, with « € ®* are annihilation operators, and the
operators X, are creation operators, writing Q this way is a
perfect example of normal ordering.
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Normal ordering (continued)

The operator Oy makes sense applied to any vector in a
representation V in Category O, since the sum ZXELX&’)V has

only finitely many nonzero terms. Hence the Casimir operator is
defined.

In Category O we may think of X, as an annihilation operator if
« is a positive root, and as a creation operator when « is a
negative root. So when we write

dim (X )
- Yy
xed@t =1

this is an example of normal ordering.
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s; permutes ©* —{«;}

Let s; be a simple reflection. If « is a positive root, then
si(a) = —a if « = o, otherwise s;(«) is positive.

To prove this we note that the positive roots are the weight
spaces in n,.. It is spanned by elements of the form

[eil [eiz,[ei37 ey, [eik,. ) eik]]]]-

From this description, the positive roots have the form

r
X = E ijCj
Jj=1

where (ki,--- , k) is a tuple of nonnegative integers.
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Proof (continued)

The weight k«; is only a root if k = 1, because [«;, ;] = 0, so if
the above expression has all i, i, --- =i we must have k = 1.
Now apply s; to >_ k;ci; to obtain

.
sila) =Y kioy — (o), ooty = ) k/ oy
j=1

where k/ = k; if j # i. If a # o; at least one k; = &/ is positive, so
si(a) cannot be a negative root.
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The Weyl vector

Now let us consider the Weyl vector p = 3 3 ¢+ , Which we
treat as a divergent sum to be renormalized. Since s; sends «;
to —a«; and permutes the remaining positive roots, we have
(formally) s;(p) = p — o;. Remembering that

Se(x) =x— (¥, x)x

we need p to be an element of the weight lattice P such that
(/,p) =1  for simple roots «;.

This does not quite fully characterize p since the « do not
span b in the Kac-Moody case. However this is the only
property that we need p to have. We choose p € h* to be a
fixed element with this property.
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What we will prove

We may now state our goals. For representations of Category
O:

@ We will prove that QO commutes with the action of the e;
and f;.
@ Therefore it acts as a scalar on irreducible representations.

@ For highest weight representations we may compute this
scalar.

@ This will contain enough information to help prove the
Kac-Weyl character formula.
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Invariance of each weight space

If V is a representation of Category O, then Q(V,) C V,, for
every u € h*.

Indeed each of the three terms Qq, >~ H;H' and 2v—!(p) has
this property. For Qg =23 X_ X« note that X4 maps V,, into
Vito, then X_ o maps V. « into V..
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Q commutes with the action of ¢, f;

We defined (]) as an inner product on h before extending it to g.
We also defined an isomorphism v : h — b* by

(H',v(H)) = (H'|H). We then defined an inner product on h* by
Al) = (v ')y ().

Let V be a g-module in Category O. Then the action of Q
commutes with the action of e; and f;.

We will give a proof that is different from that in Kac’ book. Let S
be a subset of ® U{0} such thatif x € Sand o« + «; € ® U{0}
then a + o; € S. We assume that all but finitely many elements
of S are positive roots. Let

¥ =Pos  s5=Po «

xesS xES
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The spaces

¥ =Pos  s5=Po o

xEeS xeS

are dually paired under ( | ) so let X’ be a basis of g° and X, be
the dual basis of gg. Define

Qs=) XX
t

We will prove that ¢; commutes with Qg. Since all but finitely
many of the X’ are in n_, this makes sense as an operator on V.

Note that [¢;, g°] C ¢° and [e;, gs] C gs. We write

f
enX E cuX", tht E duX,.
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Proof (continued)

Using the fact that X, is the dual basis of X’
Ctuy = ([th[“Xu)a dy = (Xu|[eiaXt])-

Since ( | ) is invariant, we have c¢,, = —d,;. Now

[ei, > XX
t

This equals

= Z[ei;Xt]X[ + ZXt[eiaxt]'
t t

D cuXX'+ ) duXX" =0.

tu tu

We have proved that [¢;, Qg] = 0.

We will apply this twice.
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Proof (continued)

LetS; := @t —{;}and S, := {«;, 0, —;}. We see that ¢;
commutes with

Qs = Z ZX];“X{,(, Qs, :XfociXocz"*'XotiXm—i_ZHjHj-
axe®@t j J
A K
Since Xo, X o, = X_ o, Xo, + & we have
Q= Qg +Qs, + 2v 1 p) — ).

So we have only to check that e; commutes with 2v—! () — "
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Proof (concluded)

Indeed
vl (p) — o el = 2v 1{p) — &, x;)e; = 0

since (", ;) = a; = 2 while (v~!(p), a;) = 1 because using
the properties in the Formulaire

1= (0, p) = (o, V(v 'p)) = (o [v"(p))

= (v '(p)leg) = (v (p)v(e)) = (v (p), i)

We have proved that O commutes with ¢;. A similar argument
will show that it commutes with the ;.
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The main theorem

Suppose V is a highest weight representation with highest
weight X. Then Q acts as a scalar on V, with value (AIX + 2p).

Let v) be the highest weight vector. Since Xfx’) annihilates vy we

have to compute the eigenvalue of

> (HH)+2v(p)

1

on v,. The calculations that show this is (AJA) + 2(A|p) are
identical to the finite-dimensional simple case.
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