Lecture 5: integrable representations
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Review: s[(2)

We will reduce some calculations to s{(2) = Ce & Cf & Ca. So
le,f] = o, [V, e] = 2e, [V, f] = —2f.
Consider a highest weight module V generated by v, such that
e(va) =0, oV vy = Av.

Define L
VA2 = ﬁfJVA.
Then it is easy to prove
o (vag)) = (A —2j)ex”
fva—g) = (F+ Dva—zj—2, e(va—2)) = (A —j+ 1)va_js2.

These identities are true in any highest weight module and can
be proved by induction on ;.
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Review: s((2) (continued)

To repeat, in a highest weight module for A € C:
o (va—g) = (A —2j)ec”

fva—z) = (+ )va—zj2, e(va—2)) = (A —j+ 1)va_ogjs2.

If A = k is a nonnegative integer then v,_,; =0 forj > k. Then V
is a basis v, vk_a, - -, v_t. Since v_;_» = 0 we have f**1y, = 0.
Moreover k = (", wt(v)).

There are two possibilities for the highest weight module V:

@ Vis the Verma module M(A);
@ Vis the irreducible quotient L(A).
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Primitive vectors

Let V be a module with a weight space decomposition. If wis a
weight of V, a nonzero vector v € V() is called a primitive
vector if there exists a submodule U of V such that v ¢ U but
e;v € U for all i.

For example, if e;v = 0 for all i, then v is a primitive vector. If V is
a highest weight module, then V is irreducible if and only if its
only primitive vectors are multiples of the highest weight vector.
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Review: s[(2): M(A) and L(A)

With k = (o), A) (= 2 in this example) here is the Verma
module M(A):

1k+]1/)\ flkv?\ VA
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~— 7 —_7 ~-30 ~_ Oy ~_ %y ~___-x

0

The dashed arrows are zero. The lighter dots mark the maximal
proper submodule. Dividing by this submodule gives the unique
irreducible quotient L(A) (black dots), which is
finite-dimensional and integrable.

The green dot is the primitive vectorfl"“vy\. It is primitive since
e 1k+1v>\ =0.
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Finite-dimensional modules

Let g be a finite-dimensional simple Lie algebra, and let V be an
irreducible finite-dimensional module. As usual, V has a weight

space decomposition
v=Epv.
o

and we will write wt(v) = wif v € V.. This means Hv = u(H)v
for H € b.

Letv € V be a vector such that e;v = 0 for some i. Then

k= (og, wt(v)) >0

and v = 0.
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Proof

Indeed, let

g = (enf;) = Ce; ® Cf; ® Cor,’
be the copy of sl(2) generated by e;, f;. Then v generates a
finite-dimensional highest weight module for this sl(2). Applying
our knowledge of sl(2) representations, f!v = 0 where
k= (o, wt(v)) > 0.
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The Serre relations

Proposition (Serre relations)

Let g be a finite-dimensional simple Lie algebra with Cartan
matrix a;;. Ifi # j then

ad(ﬁ)lf‘l"ffj =0, ad(e,-)lfa"fej.

To prove this we apply our observations on s[(2) embedded as
g(;) to the adjoint representation which is finite-dimensional.
Note that ad(e;)f; = [e;,fj] = 0 and

(o, wt(f)) = —(o”, o) = —a;;. Hence the Lemma applies
giving ad(f;)!~if; = 0. To obtain the other relation we may
apply the Chevalley involution w of g such that w(e;) = —f;,
w(f)) = —e;, w(oy’) = —o’ to interchange the two identities.

1
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Example: G,

Here is the exceptional Lie algebra g,.

0< 0— 00— 0<— @
ad(f)h -+ ad(fi)h f

The arrows show ad(f;) shifting between weight spaces. The
dashed line is ad(f;) : ad(f1)%f> — 0, illustrating the Serre
relation ad(f;)**1f = 0 with

k= (o1, wt(fa)) = (1, —0z) = 3.
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Serre relations: the Kac-Moody case

The Serre relations are true for general Kac-Moody Lie
algebras, but we have to argue differently since the preceding
arguments relied on finite-dimensionality.

We will prove:

The Serre relations:

ad(f)!~“if; =0, ad(e;)' ie;

are valid in an arbitrary Kac-Moody Lie algebra when i # j.
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There are no primitive vectors in n_

Proposition
Let g be a Kac-Moody Lie algebra and suppose thatX € n_
such that [e;, X] = 0 for all i. ThenX = 0.

Proof. Since g acts on itself by the adjoint representation, we
obtain an action of the associative algebra U(g). We make use
of the factthat U(g) = U(n_) @ U(h) ® U(n, ). We have

U(n+) X = (C ) U(n+)n+)X =CX

since n annihilates X. Also U(h)X = CX. So U(g)X = U(n_)X
is an ideal that is contained in n_. But g has no nontrivial ideals
that do not intersect b, so U(h)X = 0. Thus X = 0.



The Serre relations
0000000000800

Proof of the Serre relations

Let us denote 0;; = ad(f;)! ~“if,. The Proposition shows if we
can show ad(e)(0;,) = 0 for all k, then 6;; = 0, which is one of
the Serre relations.

First consider the case k = i. We consider the sl(2) = g,
module generated by f;. Since one of the generator relations for
g is [e;, f] = 8;;0” and we are assuming i # j, we have

ad(e;)fj = 0. So f; is a highest weight vector for g(;. Therefore
by our discussion of s[(2) theory, ad(e;) ad(f;)! ™*f; = 0 where

k= (o, wt(f)) = —(o, o) = —a.

This proves ad(e;)0;; = 0.
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Proof (continued)

Next suppose k = j. So we need to know [e;, ad(f;)! ~%if; = 0].
Note that ¢; and f; commute by the generating relations so

lej, ad (f;)' if] = ad(f;)' “ile;, f] = ad(ﬁ)l_”ff'oc}/.
First suppose that a; = 0. Then this equals
Ifi, oc}/] = <oc}/, oi)fi = aifi = 0.
Next suppose that a; = —1. Then
ad(f)' "o = ad ()’ = [fi, Ifi, 1] = (o, o) [fio ] = 0,

and the cases a;; = —2,—3, - - - are similar, depending on

[f;aﬁ] =0
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Proof (concluded)

We also need to know that [e;, 6;] = O for other k. If k # i, j then
ex commutes with both f; and f; by the generating relations of
the Kac-Moody Lie algebra, so [ex, ad(f;)! ~4if;] = 0 in this case
also.

The Lemma is proved: we have shown that with 0;; = adﬁ““'ifj;-,
lex, 0;; = O for all k. The Proposition then shows that 9;; = 0.

The other Serre relation
ad(e;)! " %e, =0
follows by applying the Chevalley involution

e — _fi7 fl — —e, X
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The idea of an integrable representation

We now turn to the notion of an integrable representation. As
we explained in Lecture 3, a representation of the Lie algebra g
of a Lie group G is integrable if it is the differential of a
representation of G.

However we would like an equivalent definition that does not
make use of the Lie group G, since we want to work in the
category of modules for a Kac-Moody Lie algebra, and we do
not wish to construct an analog of the group G.
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Local nilpotence and integrability

Let V be a g-module. We will say that an endomorphism
T :V — Vis locally nilpotent if for every vector v € V there
exists an N > 0 such that 7Vv = 0.

For g = sl(2), a representation is integrable if and only if it is
finite-dimensional. Indeed, this implies that ¢; and f; are locally
nilpotent. Conversely, an irreducible representation of s[(2) in
which e; and f; are locally nilpotent is easily seen to be
integbrable. This equivalence is also true for more general
(semsimple, simply-connected) Lie groups and their Lie
algebras.

We will say that a representation V of a general Kac-Moody Lie
algebra is integrable if it has a weight space decomposition and
the ¢; and f; are locally nilpotent.
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Integrability and the Weyl group

Integrability gives one major benefit of a lifting to G, without
having to construct G. We recall that the Weyl group W is
generated by the simple reflections s; : h* — b*:

Proposition

Suppose V is integrable. If u € b* let my (1) be the weight
multiplicity dim V,,. Then my is constant on W-orbits.
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Integrability and the Weyl group (continued)

To prove the W-invariance of weight multiplicities, we first note
the following fact, important in its own.

IfV is an integrable representation, then every vector lies in a
finite-dimensional representation of g(;;. The module V is a
direct sum of finite-dimensional irreducible g ;) -moadules.

Suppose that v is any nonzero vector. We will show that v lies in
a finite-dimensional module. We may assume that v € V,, for
some .
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Proof of the Lemma

We have e¥v = 0 for sufficiently large v. Let n be maximal such
that ¢’v # 0 and let v = e/'v where A = p+ nw;. Then vy € Vi
and v, is a highest weight vector for g(;). Since /v, = 0 for
sufficiently large M, from our knowledge of s[(2)-modules we
learn that («;”, A) is @ nonnegative integer and g(;vx is a
finite-dimensional module of dimension (', A) + 1. It contains
v. The fact that V is a direct sum of finite-dimensional modules
now follows from a well-known property of s((2, C) (due to Weyl)
that every finite-dimensional modules is completely reducible,
plus an easy Zorn’s Lemma argument.

The Lemma implies the Proposition, since the weight
multiplicities of finite-dimensional s[(2) modules are invariant
under the simple reflection of s[(2), which agrees with s;.
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Integrable highest weight representations

The remainder of this section will be devoted to the proof of the
following result. Let P be the weight lattice consisting of A € h*
such that (o, A) is an integer for all i. The cone P* of
dominant weights consists of A such that each (o, ) is a
nonnegative integer.

Let g be a Kac-Moody Lie algebra and let V be an irreducible
highest-weight representation with highest weight A. ThenV is
integrable if and only if A is a dominant weight.
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Integrability criterion

LetV = L(A) be the highest-weight irreducible representation
with highest weight \. A necessary and sufficient condition for
V to be integrable is that fNvx = 0 for sufficiently large N, where
v Is the highest weight vector.

We have a partial order = on the weight lattice in which A = p if
A —u =) m; Where n; are nonnegative integers. We defme

supp(V) = {u € h*[V, # 0}

Using the PBW theorem, we proved that V. = U(n_)v,. In
particular

supp(V) C {n € h*[u < AL
For u fixed we will have n+ N«; £ A for sufficiently large N.
Thus if v € V,, then Vi ino, =050 e}v = 0.
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To prove the Lemma, it follows from the definition that if V is
integrable then fNv, = 0 for sufficiently large N. We assume
that fNv\ = 0 for sufficiently large N and prove that V is
integrable.

So if v € V we must also show that f¥v = 0. Since V = U(n_)v,
it is sufficient to show that £¥v = 0 when v is of the form

ﬁl"'ﬁMv?n ll<l2<<1M
We write
N N N
fiﬁl'“ﬁMv}\:[fi’ﬁl"'ﬁM]vx—i_ﬁl"'ﬁM'fi VA

and the second term vanishes by assumption if N is large.
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(continued)

So it is enough to show that

ad(ﬁ) l| . 'ﬁM =0

in U(n_). If D is a derivation then by the multinomial
generalization of the Leibnitz rule

DV firy= > DN(f,1 DV (f,,).
N=Y N; Nl

We apply this with D = ad(f;). If N is sufficiently large, each
term on the right vanishes by the Serre relations.



Integrable highest weight representations

000000000 e0

Proof of the theorem

Now we may prove the theorem. To reiterate:

Let g be a Kac-Moody Lie algebra and let V be an irreducible
highest-weight representation with highest weight A. ThenV is
integrable if and only if A is a dominant weight.

Assume that V is the irreducible highest weight representation
with highest weight A. Suppose that (o', A) is a nonnegative
integer for each i. To prove that V is integrable we must show
that f¥v = 0 for sufficiently large N. What we will show is that if
k= (o, A) then fF vy = 0. Suppose not. Let u = £ vy, We
will show that eju = 0 for each j. If j # i then by the generating
relations of the Kac-Moody Lie algebra e; commutes with f; so
eju = ff'eju = 0. On the other hand if i = j then e/} "'vy =0 by
s[(2) theory.
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Proof (concluded)

We have shown that ¢;(ff"'v)) = 0 for all j. So ff*1v, is a
primitive vector, which is a contradiction since V is irreducible.

(A reminder of how this goes)

Since U(g) =U(n_) @ U(h) ® U(n,) it follows that
U(g)ff'va = U(n_)fF v, There is no way that

va € U(n_)ff 1y, so this is a proper submodule. But V is
irreducible, and so £ vy = 0.

Now V is integrable by the Lemma. We leave the converse to
the reader.
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Our main interest is in highest weight representations of a
Kac-Moody Lie algebra g. We have seen in Lecture 1 that for a
fixed A € h*:

@ There is a unique universal highest weight representation
M (M) with highest weight A such that if V is any highest
weight representation with highest weight A, there is a
surjection M(A) — V.

@ There is a unique irreducible representation L(A) that is a
quotient of any highest weight representation V for A.

The morphisms implied by these statements map the highest
weight vector (with weight A) to the highest weight vector, but
other morphisms are possible: for example there may be
embeddings M(u) — M(A) for certain u < A.
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Category O

The BGG Category O is a slightly larger category that contains
all highest weight modules (for every weight). We define it now.
Recall thatif A, € h* then A = wif A —u =) k;; where k; are
nonnegative integers. Let V be a g-module.

Definition

We say that a module V is in Category O if it has a weight
space decomposition with finite-dimensional weight spaces,
and if there are a finite number of Ay, --- , Ay € b* such that
V. =0 unless pu < some A;.

Category O is an abelian category. For finite-dimensional
semisimple Lie algebras, it is the subject of a book
Representations of Semisimple Lie algebras in the BGG
Category O by James Humphreys.
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Modules may not have finite length

If g is finite-dimensional, then a module V of Category O is
finitely generated. Moreover it has finite length, namely it has a
composition series:

0O=VyCcViCcV,C---CVy=V

where V;/V;. is irreducible, that is, V; = L(A;) for some A € b*.
If g is infinite-dimensional, this is not necessarily true. For
example by Exercise 10.3 in Kac, the Verma module M(0) does
not have finite length if W is infinite.
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The dot action

In the next couple of lectures, we will show that if A is a
dominant integral weight then the primitive vectors in M(A) are

at the values w(A +p) —pforw e W.

This motivates the definition of the “dot action” of the Weyl
group, which is the action of W on P shifted so that the fixed
point is —p instead of 0. Thus define

w-A=wA+p)—p.
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Weyl character formula

If g is a finite-dimensional semisimple Lie algebra, then we may
infer this from the Weyl character formula which we write this
way:
ch LA) = ) (—D)erAtel=e TT (1 —e !

wew xedt
Remember that

ch MAN) =e* J] 1—e )

xed@t

and so

ch LA) = Y (=D ch M(w(A+ p) — p).
weW
So
ch LA) = > (=1 ch M(w-]).
wew
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Primitive vectors in M((3,1,0))

Here is the Verma module M(A) for GL(3), showing the weight
multiplicities. (These are the values of the Kostant partition
function.)
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Primitive vectors in /((3,2,0))

Let A = (3,2,0). This is a dominant integral weight, so the
quotient L(A) of M(A) by its maximal proper submodule is
finite-dimensional. The primitive vectors are at the red weights

(except the highest weight A which is purple).
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The blue weights are the weights of L(A).
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