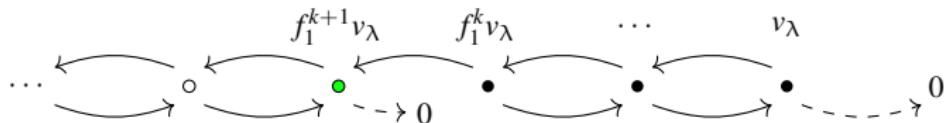


Lecture 5: integrable representations

Daniel Bump



Review: $\mathfrak{sl}(2)$

We will reduce some calculations to $\mathfrak{sl}(2) = \mathbb{C}e \oplus \mathbb{C}f \oplus \mathbb{C}\alpha^\vee$. So

$$[e, f] = \alpha^\vee, \quad [\alpha^\vee, e] = 2e, \quad [\alpha^\vee, f] = -2f.$$

Consider a highest weight module V generated by v_λ such that

$$e(v_\lambda) = 0, \quad \alpha^\vee v_\lambda = \lambda v_\lambda.$$

Define

$$v_{\lambda-2j} = \frac{1}{j!} f^j v_\lambda.$$

Then it is easy to prove

$$\alpha^\vee(v_{\lambda-2j}) = (\lambda - 2j)\alpha^\vee$$

$$f(v_{\lambda-2j}) = (j+1)v_{\lambda-2j-2}, \quad e(v_{\lambda-2j}) = (\lambda - j + 1)v_{\lambda-2j+2}.$$

These identities are true in **any highest weight module** and can be proved by induction on j .

Review: $\mathfrak{sl}(2)$ (continued)

To repeat, in a highest weight module for $\lambda \in \mathbb{C}$:

$$\alpha^\vee(v_{\lambda-2j}) = (\lambda - 2j)\alpha^\vee$$

$$f(v_{\lambda-2j}) = (j+1)v_{\lambda-2j-2}, \quad e(v_{\lambda-2j}) = (\lambda-j+1)v_{\lambda-2j+2}.$$

If $\lambda = k$ is a nonnegative integer then $v_{k-2j} = 0$ for $j > k$. Then V is a basis $v_k, v_{k-2}, \dots, v_{-k}$. Since $v_{-k-2} = 0$ we have $f^{k+1}v_k = 0$. Moreover $k = \langle \alpha^\vee, \text{wt}(v) \rangle$.

There are two possibilities for the highest weight module V :

- V is the Verma module $M(\lambda)$;
- V is the irreducible quotient $L(\lambda)$.

Primitive vectors

Let V be a module with a weight space decomposition. If μ is a weight of V , a nonzero vector $v \in V(\mu)$ is called a **primitive vector** if there exists a submodule U of V such that $v \notin U$ but $e_i v \in U$ for all i .

For example, if $e_i v = 0$ for all i , then v is a primitive vector. If V is a highest weight module, then V is irreducible if and only if its only primitive vectors are multiples of the highest weight vector.

Review: $\mathfrak{sl}(2)$: $M(\lambda)$ and $L(\lambda)$

With $k = \langle \alpha_1^\vee, \lambda \rangle$ ($= 2$ in this example) here is the Verma module $M(\lambda)$:

The dashed arrows are zero. The lighter dots mark the maximal proper submodule. Dividing by this submodule gives the unique irreducible quotient $L(\lambda)$ (black dots), which is finite-dimensional and integrable.

The green dot is the **primitive vector** $f_1^{k+1}v_\lambda$. It is primitive since $e_1f_1^{k+1}v_\lambda = 0$.

Finite-dimensional modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, and let V be an irreducible finite-dimensional module. As usual, V has a weight space decomposition

$$V = \bigoplus_{\mu} V_{\mu}$$

and we will write $\text{wt}(v) = \mu$ if $v \in V_{\mu}$. This means $Hv = \mu(H)v$ for $H \in \mathfrak{h}$.

Lemma

Let $v \in V$ be a vector such that $e_i v = 0$ for some i . Then

$$k = \langle \alpha_i^{\vee}, \text{wt}(v) \rangle \geq 0$$

and $f_i^{k+1} v = 0$.

Proof

Indeed, let

$$\mathfrak{g}_{(i)} = \langle e_i, f_i \rangle = \mathbb{C}e_i \oplus \mathbb{C}f_i \oplus \mathbb{C}\alpha_i^\vee$$

be the copy of $\mathfrak{sl}(2)$ generated by e_i, f_i . Then v generates a finite-dimensional highest weight module for this $\mathfrak{sl}(2)$. Applying our knowledge of $\mathfrak{sl}(2)$ representations, $f_i^{k+1}v = 0$ where $k = \langle \alpha_i^\vee, \text{wt}(v) \rangle \geq 0$.

The Serre relations

Proposition (Serre relations)

Let \mathfrak{g} be a finite-dimensional simple Lie algebra with Cartan matrix a_{ij} . If $i \neq j$ then

$$\text{ad}(f_i)^{1-a_{ij}}f_j = 0, \quad \text{ad}(e_i)^{1-a_{ij}}e_j.$$

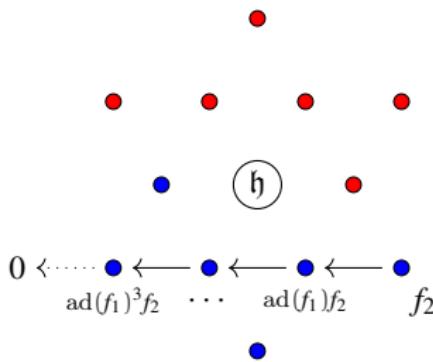
To prove this we apply our observations on $\mathfrak{sl}(2)$ embedded as $\mathfrak{g}_{(i)}$ to the adjoint representation which is finite-dimensional.

Note that $\text{ad}(e_i)f_j = [e_i, f_j] = 0$ and

$\langle \alpha_i^\vee, \text{wt}(f_j) \rangle = -\langle \alpha_i^\vee, \alpha_j \rangle = -a_{ij}$. Hence the Lemma applies giving $\text{ad}(f_i)^{1-a_{ij}}f_j = 0$. To obtain the other relation we may apply the **Chevalley involution** ω of \mathfrak{g} such that $\omega(e_i) = -f_i$, $\omega(f_i) = -e_i$, $\omega(\alpha_i^\vee) = -\alpha_i^\vee$ to interchange the two identities.

Example: G_2

Here is the exceptional Lie algebra \mathfrak{g}_2 .



The arrows show $\text{ad}(f_1)$ shifting between weight spaces. The dashed line is $\text{ad}(f_1) : \text{ad}(f_1)^3f_2 \rightarrow 0$, illustrating the Serre relation $\text{ad}(f_1)^{k+1}f_2 = 0$ with

$$k = \langle \alpha_1, \text{wt}(f_2) \rangle = \langle \alpha_1, -\alpha_2 \rangle = 3.$$

Serre relations: the Kac-Moody case

The Serre relations are true for general Kac-Moody Lie algebras, but we have to argue differently since the preceding arguments relied on finite-dimensionality.

We will prove:

Theorem

The Serre relations:

$$\text{ad}(f_i)^{1-a_{ij}} f_j = 0, \quad \text{ad}(e_i)^{1-a_{ij}} e_j$$

are valid in an arbitrary Kac-Moody Lie algebra when $i \neq j$.

There are no primitive vectors in \mathfrak{n}_-

Proposition

Let \mathfrak{g} be a Kac-Moody Lie algebra and suppose that $X \in \mathfrak{n}_-$ such that $[e_i, X] = 0$ for all i . Then $X = 0$.

Proof. Since \mathfrak{g} acts on itself by the adjoint representation, we obtain an action of the associative algebra $U(\mathfrak{g})$. We make use of the fact that $U(\mathfrak{g}) = U(\mathfrak{n}_-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}_+)$. We have

$$U(\mathfrak{n}_+) \cdot X = (\mathbb{C} \oplus U(\mathfrak{n}_+) \mathfrak{n}_+) X = \mathbb{C} X$$

since \mathfrak{n}_+ annihilates X . Also $U(\mathfrak{h})X = \mathbb{C} X$. So $U(\mathfrak{g})X = U(\mathfrak{n}_-)X$ is an ideal that is contained in \mathfrak{n}_- . But \mathfrak{g} has no nontrivial ideals that do not intersect \mathfrak{h} , so $U(\mathfrak{h})X = 0$. Thus $X = 0$.

Proof of the Serre relations

Let us denote $\theta_{ij} = \text{ad}(f_i)^{1-a_{ij}}f_j$. The Proposition shows if we can show $\text{ad}(e_k)(\theta_{i,j}) = 0$ for all k , then $\theta_{i,j} = 0$, which is one of the Serre relations.

First consider the case $k = i$. We consider the $\mathfrak{sl}(2) \cong \mathfrak{g}_{(i)}$ module generated by f_j . Since one of the generator relations for \mathfrak{g} is $[e_i, f_j] = \delta_{ij}\alpha_i^\vee$ and we are assuming $i \neq j$, we have $\text{ad}(e_i)f_j = 0$. So f_i is a highest weight vector for $\mathfrak{g}_{(i)}$. Therefore by our discussion of $\mathfrak{sl}(2)$ theory, $\text{ad}(e_i)\text{ad}(f_i)^{1+k}f_j = 0$ where

$$k = \langle \alpha_i^\vee, \text{wt}(f_j) \rangle = -\langle \alpha_i^\vee, \alpha_j \rangle = -a_{ij}.$$

This proves $\text{ad}(e_i)\theta_{ij} = 0$.

Proof (continued)

Next suppose $k = j$. So we need to know $[e_j, \text{ad}(f_i)^{1-a_{ij}}f_j] = 0$. Note that e_j and f_i commute by the generating relations so

$$[e_j, \text{ad}(f_i)^{1-a_{ij}}f_j] = \text{ad}(f_i)^{1-a_{ij}}[e_j, f_j] = \text{ad}(f_i)^{1-a_{ij}}\alpha_j^\vee.$$

First suppose that $a_{ij} = 0$. Then this equals

$$[f_i, \alpha_j^\vee] = \langle \alpha_j^\vee, \alpha_i \rangle f_i = a_{ij}f_i = 0.$$

Next suppose that $a_{ij} = -1$. Then

$$\text{ad}(f_i)^{1-a_{ij}}\alpha_j^\vee = \text{ad}(f_i)^2\alpha_j^\vee = [f_i, [f_i, \alpha_j^\vee]] = \langle \alpha_j^\vee, \alpha_i \rangle [f_i, f_i] = 0,$$

and the cases $a_{ij} = -2, -3, \dots$ are similar, depending on $[f_i, f_i] = 0$.

Proof (concluded)

We also need to know that $[e_k, \theta_{ij}] = 0$ for other k . If $k \neq i, j$ then e_k commutes with both f_j and f_i by the generating relations of the Kac-Moody Lie algebra, so $[e_k, \text{ad}(f_i)^{1-a_{ij}}f_j] = 0$ in this case also.

The Lemma is proved: we have shown that with $\theta_{i,j} = \text{ad}f_i^{1-a_{ij}}f_j$, $[e_k, \theta_{i,j}] = 0$ for all k . The Proposition then shows that $\theta_{i,j} = 0$.

The other Serre relation

$$\text{ad}(e_i)^{1-a_{ij}}e_k = 0$$

follows by applying the Chevalley involution

$$e_i \rightarrow -f_i, \quad f_i \rightarrow -e_i, \quad \alpha_i^\vee \rightarrow -\alpha_i^\vee.$$

The idea of an integrable representation

We now turn to the notion of an integrable representation. As we explained in Lecture 3, a representation of the Lie algebra \mathfrak{g} of a Lie group G is **integrable** if it is the differential of a representation of G .

However we would like an equivalent definition that does not make use of the Lie group G , since we want to work in the category of modules for a Kac-Moody Lie algebra, and we do not wish to construct an analog of the group G .

Local nilpotence and integrability

Let V be a \mathfrak{g} -module. We will say that an endomorphism $T : V \rightarrow V$ is **locally nilpotent** if for every vector $v \in V$ there exists an $N > 0$ such that $T^N v = 0$.

For $\mathfrak{g} = \mathfrak{sl}(2)$, a representation is integrable if and only if it is finite-dimensional. Indeed, this implies that e_1 and f_1 are locally nilpotent. Conversely, an irreducible representation of $\mathfrak{sl}(2)$ in which e_1 and f_1 are locally nilpotent is easily seen to be integrable. This equivalence is also true for more general (semisimple, simply-connected) Lie groups and their Lie algebras.

We will say that a representation V of a general Kac-Moody Lie algebra is **integrable** if it has a weight space decomposition and the e_i and f_i are locally nilpotent.

Integrability and the Weyl group

Integrability gives one major benefit of a lifting to G , without having to construct G . We recall that the Weyl group W is generated by the simple reflections $s_i : \mathfrak{h}^* \longrightarrow \mathfrak{h}^*$:

$$s_i(x) = x - \langle \alpha_i^\vee, x \rangle \alpha_i.$$

Proposition

Suppose V is integrable. If $\mu \in \mathfrak{h}^*$ let $m_V(\mu)$ be the weight multiplicity $\dim V_\mu$. Then m_V is constant on W -orbits.

Integrability and the Weyl group (continued)

To prove the W -invariance of weight multiplicities, we first note the following fact, important in its own.

Lemma

If V is an integrable representation, then every vector lies in a finite-dimensional representation of $\mathfrak{g}_{(i)}$. The module V is a direct sum of finite-dimensional irreducible $\mathfrak{g}_{(i)}$ -modules.

Suppose that v is any nonzero vector. We will show that v lies in a finite-dimensional module. We may assume that $v \in V_\mu$ for some μ .

Proof of the Lemma

We have $e_i^N v = 0$ for sufficiently large v . Let n be maximal such that $e_i^n v \neq 0$ and let $v_\lambda = e_i^n v$ where $\lambda = \mu + n\alpha_i$. Then $v_\lambda \in V_\lambda$ and v_λ is a highest weight vector for $\mathfrak{g}_{(i)}$. Since $f_i^M v_\lambda = 0$ for sufficiently large M , from our knowledge of $\mathfrak{sl}(2)$ -modules we learn that $\langle \alpha_i^\vee, \lambda \rangle$ is a nonnegative integer and $\mathfrak{g}_{(i)} v_\lambda$ is a finite-dimensional module of dimension $\langle \alpha_i^\vee, \lambda \rangle + 1$. It contains v . The fact that V is a direct sum of finite-dimensional modules now follows from a well-known property of $\mathfrak{sl}(2, \mathbb{C})$ (due to Weyl) that every finite-dimensional module is completely reducible, plus an easy Zorn's Lemma argument.

The Lemma implies the Proposition, since the weight multiplicities of finite-dimensional $\mathfrak{sl}(2)$ modules are invariant under the simple reflection of $\mathfrak{sl}(2)$, which agrees with s_i .

Integrable highest weight representations

The remainder of this section will be devoted to the proof of the following result. Let P be the **weight lattice** consisting of $\lambda \in \mathfrak{h}^*$ such that $\langle \alpha_i^\vee, \lambda \rangle$ is an integer for all i . The cone P^+ of **dominant weights** consists of λ such that each $\langle \alpha_i^\vee, \lambda \rangle$ is a nonnegative integer.

Theorem

Let \mathfrak{g} be a Kac-Moody Lie algebra and let V be an irreducible highest-weight representation with highest weight λ . Then V is integrable if and only if λ is a dominant weight.

Integrability criterion

Lemma

Let $V = L(\lambda)$ be the highest-weight irreducible representation with highest weight λ . A necessary and sufficient condition for V to be integrable is that $f_i^N v_\lambda = 0$ for sufficiently large N , where v_λ is the highest weight vector.

We have a partial order \succcurlyeq on the weight lattice in which $\lambda \succcurlyeq \mu$ if $\lambda - \mu = \sum n_i \alpha_i$ where n_i are nonnegative integers. We define

$$\text{supp}(V) = \{\mu \in \mathfrak{h}^* \mid V_\mu \neq 0\}.$$

Using the PBW theorem, we proved that $V = U(\mathfrak{n}_-) v_\lambda$. In particular

$$\text{supp}(V) \subseteq \{\mu \in \mathfrak{h}^* \mid \mu \preccurlyeq \lambda\}.$$

For μ fixed we will have $\mu + N\alpha_i \not\preccurlyeq \lambda$ for sufficiently large N . Thus if $v \in V_\mu$ then $V_{\mu+N\alpha_i} = 0$ so $e_i^N v = 0$.

Proof

To prove the Lemma, it follows from the definition that if V is integrable then $f_i^N v_\lambda = 0$ for sufficiently large N . We assume that $f_i^N v_\lambda = 0$ for sufficiently large N and prove that V is integrable.

So if $v \in V$ we must also show that $f_i^N v = 0$. Since $V = U(\mathfrak{n}_-) v_\lambda$ it is sufficient to show that $f_i^N v = 0$ when v is of the form

$$f_{i_1} \cdots f_{i_M} v_\lambda, \quad i_1 \leq i_2 \leq \cdots \leq i_M$$

We write

$$f_i^N f_{i_1} \cdots f_{i_M} v_\lambda = [f_i^N, f_{i_1} \cdots f_{i_M}] v_\lambda + f_{i_1} \cdots f_{i_M} \cdot f_i^N v_\lambda$$

and the second term vanishes by assumption if N is large.

(continued)

So it is enough to show that

$$\text{ad}(f_i)^N f_{i_1} \cdots f_{i_M} = 0$$

in $U(\mathfrak{n}_-)$. If D is a derivation then by the multinomial generalization of the Leibnitz rule

$$D^N(f_{i_1}^{k_1} \cdots f_{i_r}^{k_r}) = \sum_{N=\sum N_i} \frac{N!}{N_1! \cdots N_r!} D^{N_1}(f_{i_1}) \cdots D^{N_r}(f_{i_M}).$$

We apply this with $D = \text{ad}(f_i)$. If N is sufficiently large, each term on the right vanishes by the Serre relations.

Proof of the theorem

Now we may prove the theorem. To reiterate:

Theorem

Let \mathfrak{g} be a Kac-Moody Lie algebra and let V be an irreducible highest-weight representation with highest weight λ . Then V is integrable if and only if λ is a dominant weight.

Assume that V is the irreducible highest weight representation with highest weight λ . Suppose that $\langle \alpha_i^\vee, \lambda \rangle$ is a nonnegative integer for each i . To prove that V is integrable we must show that $f_i^N v_\lambda = 0$ for sufficiently large N . What we will show is that if $k = \langle \alpha_i^\vee, \lambda \rangle$ then $f_i^{k+1} v_\lambda = 0$. Suppose not. Let $u = f_i^{k+1} v_\lambda$. We will show that $e_j u = 0$ for each j . If $j \neq i$ then by the generating relations of the Kac-Moody Lie algebra e_j commutes with f_i so $e_j u = f_i^{k+1} e_j u = 0$. On the other hand if $i = j$ then $e_i f_i^{k+1} v_\lambda = 0$ by $\mathfrak{sl}(2)$ theory.

Proof (concluded)

We have shown that $e_j(f_i^{k+1}v_\lambda) = 0$ for all j . So $f_i^{k+1}v_\lambda$ is a primitive vector, which is a contradiction since V is irreducible.

(A reminder of how this goes)

Since $U(\mathfrak{g}) = U(\mathfrak{n}_-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}_+)$ it follows that $U(\mathfrak{g})f_i^{k+1}v_\lambda = U(\mathfrak{n}_-)f_i^{k+1}v_\lambda$. There is no way that $v_\lambda \in U(\mathfrak{n}_-)f_i^{k+1}v_\lambda$, so this is a proper submodule. But V is irreducible, and so $f_i^{k+1}v_\lambda = 0$.

Now V is integrable by the Lemma. We leave the converse to the reader.

Review

Our main interest is in highest weight representations of a Kac-Moody Lie algebra \mathfrak{g} . We have seen in Lecture 1 that for a fixed $\lambda \in \mathfrak{h}^*$:

- There is a unique universal highest weight representation $M(\lambda)$ with highest weight λ such that if V is any highest weight representation with highest weight λ , there is a surjection $M(\lambda) \rightarrow V$.
- There is a unique irreducible representation $L(\lambda)$ that is a quotient of any highest weight representation V for λ .

The morphisms implied by these statements map the highest weight vector (with weight λ) to the highest weight vector, but other morphisms are possible: for example there may be embeddings $M(\mu) \rightarrow M(\lambda)$ for certain $\mu \preccurlyeq \lambda$.

Category \mathcal{O}

The **BGG Category \mathcal{O}** is a slightly larger category that contains all highest weight modules (for every weight). We define it now. Recall that if $\lambda, \mu \in \mathfrak{h}^*$ then $\lambda \succcurlyeq \mu$ if $\lambda - \mu = \sum k_i \alpha_i$ where k_i are nonnegative integers. Let V be a \mathfrak{g} -module.

Definition

We say that a module V is in Category \mathcal{O} if it has a weight space decomposition with finite-dimensional weight spaces, and if there are a finite number of $\lambda_1, \dots, \lambda_N \in \mathfrak{h}^*$ such that $V_\mu = 0$ unless $\mu \preccurlyeq$ some λ_i .

Category \mathcal{O} is an abelian category. For finite-dimensional semisimple Lie algebras, it is the subject of a book **Representations of Semisimple Lie algebras in the BGG Category \mathcal{O}** by James Humphreys.

Modules may not have finite length

If \mathfrak{g} is finite-dimensional, then a module V of Category \mathcal{O} is finitely generated. Moreover it has finite length, namely it has a composition series:

$$0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_N = V$$

where V_i/V_{i+1} is irreducible, that is, $V_i \cong L(\lambda_i)$ for some $\lambda \in \mathfrak{h}^*$. If \mathfrak{g} is infinite-dimensional, this is not necessarily true. For example by Exercise 10.3 in Kac, the Verma module $M(0)$ does not have finite length if W is infinite.

The dot action

In the next couple of lectures, we will show that if λ is a dominant integral weight then the primitive vectors in $M(\lambda)$ are at the values $w(\lambda + \rho) - \rho$ for $w \in W$.

This motivates the definition of the “dot action” of the Weyl group, which is the action of W on P shifted so that the fixed point is $-\rho$ instead of 0. Thus define

$$w \cdot \lambda = w(\lambda + \rho) - \rho.$$

Weyl character formula

If \mathfrak{g} is a finite-dimensional semisimple Lie algebra, then we may infer this from the Weyl character formula which we write this way:

$$\text{ch } L(\lambda) = \sum_{w \in W} (-1)^{\ell(w)} e^{w(\lambda + \rho) - \rho} \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})^{-1}$$

Remember that

$$\text{ch } M(\lambda) = e^\lambda \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})^{-1}$$

and so

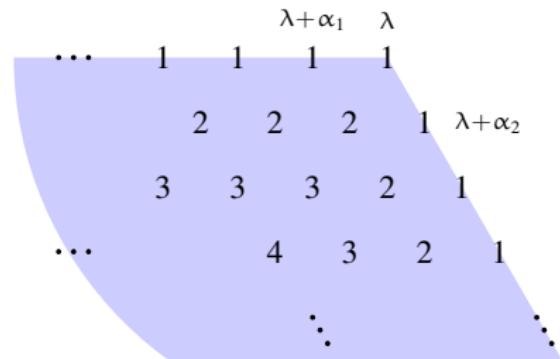
$$\text{ch } L(\lambda) = \sum_{w \in W} (-1)^{\ell(w)} \text{ch } M(w(\lambda + \rho) - \rho).$$

So

$$\text{ch } L(\lambda) = \sum_{w \in W} (-1)^{\ell(w)} \text{ch } M(w \cdot \lambda).$$

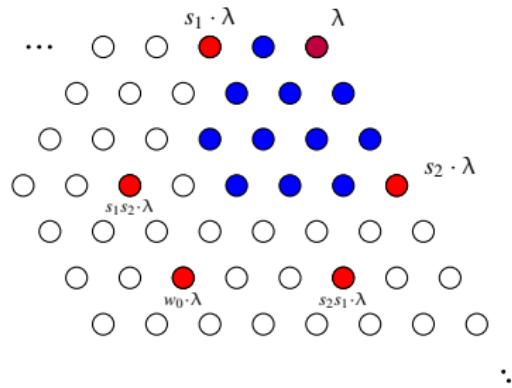
Primitive vectors in $M((3, 1, 0))$

Here is the Verma module $M(\lambda)$ for $GL(3)$, showing the weight multiplicities. (These are the values of the Kostant partition function.)



Primitive vectors in $M((3, 2, 0))$

Let $\lambda = (3, 2, 0)$. This is a dominant integral weight, so the quotient $L(\lambda)$ of $M(\lambda)$ by its maximal proper submodule is finite-dimensional. The primitive vectors are at the red weights (except the highest weight λ which is purple).



The blue weights are the weights of $L(\lambda)$.