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Introduction

In Chapter 1 of Kac, Infinite-dimensional Lie algebras, Kac
gives an ingenious construction of the Kac-Moody Lie algebra
in his Theorem 1.2. In the notes he asserts that the theorem
should be attributed to Chevalley (1948).

Proofs of the construction of the Kac-Moody Lie algebras were
given in 1968 independently by Moody and Kac. Both papers
contain much more than this construction. The argument in the
book is more similar to Moody’s 1968 paper than to Kac’s.

This proof relies on constructing an auxiliary Lie algebra g of
which the Kac-Moody Lie algebra is a quotient, then by
arguments following Jacobson, Verma modules are constructed
by by hand. This gives enough information to construct a
quotient that is the desired Lie algebra.
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Free Lie algebras

Today we want to describe Lie algebras that are described by
generators and relations, so we begin by discussing free Lie
algebras. A reference for this topic is Bourbaki, Lie groups and
Lie algebras, Chapter 2. See also this article by Casselman:

Free Lie algebras by Casselman (web link)

Let X be a set, which for our purposes will be finite. A magma is
aset M withamap m: M x M — M that we will think of as a
kind of multiplication. There is an obvious notion of a
homomorphism of magmas: this is a map ¢ : M — M’ such

that m’((x), b(y)) = d(m(x,y)).

A nonassociative algebra over a field F is an F-vector space A
with a bilinearmap n: A x A — A.


https://www.math.ubc.ca/~cass/research/pdf/Free.pdf
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Universal properties

For each of the categories of magmas, vector spaces,
nonassociative algebras, Lie algebras and associative there is
a notion of a free object over X. Thus the free magma on X is
defined by the universal property:

Definition

A free magma on X is a magma My together with a map
j:X — My such thatif ¢ : X — P is a map from X into a
magma, there is a unique homomorphism ® : Mxy — P such
that p = @ o).

Free vector spaces, nonassociative algebras, Lie algebras and
associative algebras on X are defined similarly. Two of these
constructs are familiar: the free vector space is just the free
module which we will denote F[X], and the free associative
algebra is just the tensor algebra over F[X].
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Free magmas

However we are interested in the free Lie algebra, so we will
review its construction. We will construct the free
nonassociative algebra as the free vector space over the free
magma, and define the free Lie algebra as a quotient.

As usual, an object defined by a universal property is unique up
to isomorphism. However we need to know the existence of the
free object.

We will define the free magma My to be the set of finite rooted
trees whose leaves are labeled by elements of X. To multiply
two trees, we join their roots.
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Rooted trees and the free magma

A rooted tree is a directed graph that contains no cycles, and
has a initial vertex, the root. Terminal vertices are called leaves.
A tree is called binary if each vertex that is not a leaf has two
successor vertices, one called ‘left’ and one called ‘right’.

Let My be the set of all finite rooted trees with an element of X
assigned to each leaf.
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The free magma (continued)

To define the product of two rooted labeled binary trees we
adjoin a new root. The old roots become the left and right
siblings of the new root.

@\@@x@v@_

@ |dentify x € X with the singleton tree whose leaf is labeled x.
@ Write x - y or xy as usual for the multiplication in the magma.

@ Use parentheses to disambiguate expressions.
(xy)x x zy = ((xy)x)(zy) -



Free Lie algebras
0000008000

The universal property

With X identified as a subset of My, the universal property has
the following form.

Universal Property

Let P be any magma and ¢ : X — P a mapping. Then ¢
extends uniquely to a magma homomorphism My — P.

The universal property is almost obvious.



Free Lie algebras
[e]e]e]e]e]ele] le]e]

The Free Lie algebra

The free Lie algebra on X is also characterized by a universal
property. We seek a Lie algebra £x together with a mapping
Jj: X — £x that is universal in the following sense:

Universal Property

If ¢ : X — g is any mapping from X into a Lie algebra, there is a
unique Lie algebra homomorphism © : £x — g such that

b =doj.

Briefly, any homomorphism from X into a Lie algebra factors
through £x. As usual, an object characterized by a universal
property is unique up to isomorphism, but there is an issue of
existence.
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Construction

By a nonassociatiative algebra (meaning, more precisely, a “not
necessarily associative algebra”) we mean a vector space A
with a bilinear map m : A x A — A that we will think of as a kind
of multiplication. We can construct a free nonassociative
algebra as the free vector space F[Mx] over the free magma.
Combining the universal properties of the free magma and the
free vector space, we see that any map from X into a
nonassociative algebra factors uniquely through F[Mx].

Now let J be the (two-sided) ideal generated by elements of
F[My] of the forms:

X-X, X-y+y-x, (x-y)-z+-2) - x+(z-x)-y,

for x,y,z € F[Mx] or equivalently (by an easy argument) for
x,y,z € Mx. The quotient £x = F[Mx]/J is a Lie algebra by
construction.
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The universal enveloping algebra of £y

Let V be a vector space. The tensor algebra
T(v) = Petv
k=0

has the universal property that any linear map from V to an
associative algebra factors through 7(V).

Proposition
The universal enveloping algebra of £x is isomorphic to the
tensor algebra T(F[X]).

Both these associative algebras have the same universal
property: a homomorphism from X into an associative algebra
factors uniquely through A. If A = U(£y) this follows by
combining the universal property of the free Lie algebra with
the universal property of the enveloping algebra. If A = T(F[X])
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Roots and coroots encode the Weyl group

If g is a finite-dimensional Lie algebra, then a key aspect of its
structure is the Weyl group. It acts on the Cartan subalgebra b
and by duality, on and its dual space h*. The group is
generated by simple reflections s; which are given by

si(x) = x — (o, x) e, xeh®
Dually

si(y):y_<yvo(i>(xi\/7 th
Here o; and o are particular elements of h and h* called the
simple roots and simple coroots. It is easy to check that these
two maps s; : h* — b* and s; : h — h have order 2 and are
adjoints.
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The Cartan matrix

The matrix A = (a;) where a; = («,”, «;) is called the Cartan
matrix of g. A key idea is that from the Cartan matrix, we may
produce a Lie algebra g containing h as an abelian subalgebra.
This construction turns out to work nicely with very little
required of A. We assume:

@ The entries in A are integers.

@ The diagonal entries a;; =2

@ Ifi#jthena; <O.

@ a; # 0if and only if aj; # 0.
For the deeper theory it is necessary to assume that A is
symmetrizable. This means that there is a diagonal matrix D

such that A = DB where B symmetric. This implies the last
condition.
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Example: Cartan Type A;

Suppose g = sl5 of Cartan type A3. This root system is
simply-laced meaning that all roots have the same length so we
may take o; = ;. We have

(xl:(la_170,0)a “2:(0717_150)7 0(3:(07071a_1)

and
2 -1 0
A= -1 2 -1
0O -1 2

For simply laced systems the Cartan matrix is symmetric.
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Example: Cartan Type B;

Next suppose g = so(7) of Cartan type B;. We may identify
h = C3 in such a way that the simple roots and coroots are

X1 :(17_170)7 “2:(0717_1)7 Cl3:(0,0,1)

« = (1,—1,0), o =(0,1,—1), ay =(0,0,2).

The Cartan matrix is

o -2 2
So this type is symmetrizable. Here’s the Dynkin diagram:

aq a2 a3
o————o
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Example: Cartan Type C;

Next suppose g = sp(6) of type C3. Now we may identify h = C>
in such a way that

X1 :(17_170)7 062:(071,—1), 032(0,0,2),

o = (1,—1,0), o =(0,1,—1), ay =(0,0,1).

Now
2 -10 1 2 —10
A=|-1 2 —2)=pB, D=(1 ] B:(fl 2 72>.
0 1 2 0 —2 2

This type is also symmetrizable. Here’s the Dynkin diagram:

a1 (%) (0%}

o ——o—<—»
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Reminder: Generalized Cartan matrices

Assume that A = (a;;) is an n x n integer matrix such that:
® a; =2;
@ a; <0ifi#j.

Instead of assuming that A is symmetrizable, at first it is enough
to assume

@ a; =0ifandonly if a; = 0.

Such an A will be called a generalized Cartan matrix.
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Realization

Suppose that A is n x n and that ¢ is the rank of A. Following
Kac, Infinite-dimensional Lie algebras, Section 1.1, let us define
a realization of A to be a pair of vector spaces b, bh* in duality,
with elements «; € h*, o’ € h. We require:

@ Both sets {«;} and {«."} are linearly independent;
® (o, 0y) = ay;
@ n—{=dim(h) —n.
In the case where A is the Cartan matrix of a semisimple Lie

algebra n = {, so dim(h) = n. In general we need h to be a bit
larger than n. In the affine case, we will find that dim(h) =n + 1.
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Existence of a realization

Proposition (Kac, Proposition 1.1)
There exists a realization of A.

Kac proves that the realization is unique up to an obvious
notion of isomorphism.

Proof. Permute the indices if necessary so that the first £ rows
of A are linearly dependent, and write

= (%)

where rank(A;) = rank(A) = (.



Kac-Moody Lie algebras
00000000 e0000000000000000000

Proof, continued

Consider the n x (2n — £) matrix

Ay
C= .
< Ay I )

Taking h = C**Ylet ay,--- , x, € h* be the coordinate
functions, and let «” be the rows of C. Then we have
(o, ;) = a;; and both sets of vectors {«;} and {«,"} are linearly

independent.
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The goal is to construct a Lie algebra g with a triangular
decomposition
g=n_o h Dng,

from the Cartan matrix A and its realization. We will see that g
can be infinite-dimensional, though of course § is
finite-dimensional.

The Lie algebra g will be a quotient of a larger Lie algebra
g=n_ohodn,

which will be more straightforward to construct. The first step is
to construct g. This is done by generators and relations.
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A key idea

Before launching into the construction, we isolate a key idea.

Leth be a finite-dimensional abelian Lie algebra and let V be a
moaule with a weight space decomposition

Let S be subset of the weights in this decomposition. Then V
has a subalgebra U that is maximal with respect to the

condition that
uvnépv. =o.
pnes
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This follows from the fact (proved in Lecture 2) that any
submodule W of V has itself a weight decomposition, so

W= W,
neh”
W, C V.. So a necessary and sufficient condition for
wnEhv.=0
HES

is that W, = 0 for u € S. Thus the sum of all such W also
satisfies this condition.

The Proposition implies, for example that if V is highest weight
module, then V has a maximal proper submodule. We just take
S = {A} where A is the highest weight.
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The Lie algebra g

We reiterate that the Kac-Moody Lie algebra will be a quotient
of another Lie algebra g. The Lie algebra g is generated by b
and generators ¢;, f; subject to the relations

leinfi] = 80" (ij=1,---,n)
hh'1=0  (hh' €h)
(h,eil = (h, &;)e;
[h,fil = —(h,e)fi (i=1,---,n,h €B).

We can take the free Lie algebra on the generators ¢;, f; and a
basis of h, and quotient by the ideal generated by these
relations.
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Digression: the Serre relations

It is possible to add relations called Serre relations to these to
obtain the Kac-Moody Lie algebra g. The Serre relations are
precisely what is needed to make the adjoint representation
itself integrable. Including these would give a presentation of g.
However what is done in Kac’s book is to omit the Serre
relations, producing this Lie algebra g, then obtain g as a
quotient.

The Serre relations have the form
ad(ei)“”ffej =— ad(ﬁ)““if'fj =0

It is easy to see (conceptually) why these should be true and
we will consider them later when we discuss integrability.
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The main theorem

Theorem (Theorem 1.2 in Kac)

The Lie algebra n. generated by the e; is free on these
generators, and the algebra n_ generated by the f; is similarly
free. The Lie algebra g has a weight space decomposition with
finite-dimensional weight spaces. There is a unique ideal ¢ that
is maximal with respect to the condition thatt N = 0.
Furthermore

t=(tNn ) d(tNn_).

This was proved independently by Kac and Moody in 1968.
The proof in Moody’s paper (A New Class of Lie Algebras) is
similar to what Kac does in his book. The key idea is to build a
Verma module by hand, and extract key information from it.
This construction is essentially in Jacobson’s 1962 book on Lie
algebras.
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Proof. Let A : h — C be a linear functional. The proof depends
on constructing the corresponding Verma module by hand.
Since n_ is larger than the corresponding n_ in the quotient g,
this Verma module is larger (but also simpler) than the Verma
module for g.

Once the Verma module is in hand we will extract key
information that will allow us to prove that n_ and n are free
Lie algebras on the f; and ¢;, and to obtain the triangular
decomposition. Finishing the proof will use “key idea”
argument.
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Proof (continued)

Let V be an n-dimensional vector space with basis vy, -, v,.
We will construct a representation of g on the tensor algebra
T(V). We define

fla) =vi®a, acT(V)
(1) =AW)1,  hep,
and recursively on ®*V:
h(v; @ a) = o;(h)v; ® a + v; @ h(a), aec® v
ei(1) =0
and recursively on ®*V:
ei(vi®@a) = 6ijoc>/(a) +v; ® ejla), aec @ v

These maps are well-defined, depending only on the universal
property of the tensor product. But we have to show that they
satisfy the relations that we’ve imposed on the generators.
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Proof (continued)

The relation
(h,h'] =0 (h,h' €h)

is obvious since h acts diagonally. We have
(effi—fiei)(a) = ei(vi@a)—v;@ei(a) = 800" (a)+v;@ei(a)—vi@e;(a)

SO
(efj — fiei)(a) = 6,~jcx>/(a).
We omit the verification of the other two properties
[l’l, e,-] = <h, OC,'>€,‘,

[hvfi]:_<haoci>l‘ (lzlvanaheh)

See Kac for details of these.
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The Lie algebra n_ is free

We will argue next that 7(V) is a universal enveloping algebra
for n_, and that n_ is free on the generators f;.

We have a representation of n_ on T(V) from restricting the
representation of g constructed above, hence we have a
homomorphism of U(n_) to T(V), which is a surjection since
the f; map to algebra generators v; of T(V). We wish to argue
that this homomorphism is an isomorphism. Let § be the free
Lie algebra on vy, - - ,v,. We have shown earlier in this lecture
that 7(V) = U(f). We have a Lie algebra homomorphism

f — n_ in which v; — f;. The kernel of this Lie algebra
homomorphism is contained in the kernel of the composition
T(V)=U(f) — U(n_) — T(V), which is the identity map, so
actually f = n_ . We have proved that n_ is free on the
generators f;, and also that its enveloping algebra is T(V).
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Towards the triangular decomposition

Our next task is to argue that
g=n_®bhdn,.

First note that n_ +h+n, = g. Indeed n_ + h +n, contains the
generators ¢;, f; and h and (from the defining relations) is closed
under ad(e;), ad(h;) and ad(h) for h € b, so this much is clear.

However we must argue that the sum n_ + § +n = g is direct.
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The sum g=n_ @ h dn, is direct

To prove that the sum n_ + b +n, is direct, let n_, h, n; be
elements of n_, h and n;. such that n_ + h 4+ n = 0. Apply this
identity to the module 1 € T(V). Then ny (1) = 0 while

h(1) = (A, h). We see thatn_(1) + (A\,h) =0 forall A € h*. The
only way (A, h) can be independent of A is if 2 = 0 and so

n_(1) = 0. We have shown that 7(V) may be identified with the
enveloping algebra of n_. With this identification, n_ € n_
maps to the element n_(1) € T(V). Since the inclusion of a Lie
algebra in its enveloping algebra is injective, n_ (1) = 0 implies
that n_ = 0. We have proved that if n_ + 2+ n,. = 0 then h and
n_ both vanish, and therefore the sumg=n_® b S n, is direct.
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Weight space decomposition: n_

We will argue that g has a weight space decomposition. The
first step is to show that n_ has a weight space decomposition.
It is an h-module via the adjoint representation.

It follows from PBW that U(n_) = T(V) has a weight space
decomposition with finite multiplicities, since every standard
vector f;, - - - fi, with iy - - - i is an h-eigenvector with weight

-y, — ... — o, and these span n_. Because the «; are linearly
independent, the dimensions of the weight spaces are finite.

Now since n_ is an h-submodule of T(V), n_ itself has a weight
space decomposition.
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The weight space decomposition (continued)

It is enough to see that each of n_, h and n separately have
weight space decompositions. We have discussed n_ and of
course b itself is a weight space with eigenvalue 0.

This leaves n ..

We have a automorphism w : g — g such that w(e;) = —f;,
w(f;) = —e; and w(h) = —h, which follows from the presentation
of g by generators and relations. Applying the involution, we
may deduce that n, is also a free Lie algebra generated by

the €;.
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The ideal ©

The last thing to prove is that g has an ideal v that is maximal
with respect to the condition that t N = 0.

From the weight space decomposition, a necessary and
sufficient condtion for t N h = 0 is that

vt C @ Go-
a#0

From this characterization it is obvious that the sum of such ¢
does not meet § and therefore there is an ideal that is maximal
for the condition that tNfh = 0.

The theorem is now proved.
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The definition of the Kac-Moody Lie algebra

Now we may define the Kac-Moody Lie algebra associated to a
generalized Cartan matrix A as follows. We start with a
realization (b, b*).

Definition
The Lie algebra g is generated by h and generators ¢;, f; subject
to the relations

ler, f] = 80" (i,j=1,-++,n)
(h,h'] =0 (h,h’ €b)
(h,eil = (h, &;)e;
[h,fil = —(hei)fi (i=1,---,n,h €B).

Additionally, there is a requirement that g has no nonzero ideal
vsuchthattnh =0.
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Existence and uniqueness of the Kac-Moody Lie algebra

Proposition
There is a unique Lie algebra g satisfying this definition.

Clearly we may obtain such a Lie algebra by taking g and
quotienting by the ideal t that is maximal with respect to the
condition that t N h = 0. Conversely, given a Lie algebra g with
generators satisfying such relations, there is a homomorphism
g — g mapping the generators in g to the generators in g, and
it is easy to see that the kernel of this homomorphism must be
the maximal v such thattNh = 0.
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Finite-dimensional simple Lie algebras

Proposition
Let g be a simple Lie algebra with Cartan matrix A. Then g is
the Kac-Moody Lie algebra associated to A.

This is clear since g has generators with the given relations and
no proper nonzero ideals, a fortiori no nonzero ideals t such
thatt N =0.
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Affine Lie algebras are Kac-Moody Lie algebras

Let g be a finite-dimensional simple Lie algebra. Let g be the
untwisted affine Lie algebra associated to g. Then g is the
Kac-Moody Lie algebra associated to the extended Cartan
matrix A of g.

We must show that any nonzero ideal t intersects h. We know
that v has a weight space decomposition, so it contains an
element X,, of some X, where « = & + nd is a root. Here

X € gs. We may find Y € g_-,, such that (X|Y) # 0. We have

[Xna an] - [Xa Y]O + I’l(X|Y)K

This is in § so it must vanish. Therefore n = 0 and so & # 0.
This implies that [X, Y] # 0, but [X, Y] € b, contradiction.
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