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Introduction

In Chapter 1 of Kac, Infinite-dimensional Lie algebras, Kac
gives an ingenious construction of the Kac-Moody Lie algebra
in his Theorem 1.2. In the notes he asserts that the theorem
should be attributed to Chevalley (1948).

Proofs of the construction of the Kac-Moody Lie algebras were
given in 1968 independently by Moody and Kac. Both papers
contain much more than this construction. The argument in the
book is more similar to Moody’s 1968 paper than to Kac’s.

This proof relies on constructing an auxiliary Lie algebra g̃ of
which the Kac-Moody Lie algebra is a quotient, then by
arguments following Jacobson, Verma modules are constructed
by by hand. This gives enough information to construct a
quotient that is the desired Lie algebra.
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Free Lie algebras

Today we want to describe Lie algebras that are described by
generators and relations, so we begin by discussing free Lie
algebras. A reference for this topic is Bourbaki, Lie groups and
Lie algebras, Chapter 2. See also this article by Casselman:

Free Lie algebras by Casselman (web link)

Let X be a set, which for our purposes will be finite. A magma is
a set M with a map m : M ×M −→ M that we will think of as a
kind of multiplication. There is an obvious notion of a
homomorphism of magmas: this is a map φ : M −→ M ′ such
that m ′(φ(x),φ(y)) = φ(m(x, y)).

A nonassociative algebra over a field F is an F-vector space A
with a bilinear map µ : A× A −→ A.

https://www.math.ubc.ca/~cass/research/pdf/Free.pdf
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Universal properties

For each of the categories of magmas, vector spaces,
nonassociative algebras, Lie algebras and associative there is
a notion of a free object over X. Thus the free magma on X is
defined by the universal property:

Definition
A free magma on X is a magma MX together with a map
j : X −→ MX such that if φ : X −→ P is a map from X into a
magma, there is a unique homomorphism Φ : MX −→ P such
that φ = Φ ◦ j.

Free vector spaces, nonassociative algebras, Lie algebras and
associative algebras on X are defined similarly. Two of these
constructs are familiar: the free vector space is just the free
module which we will denote F[X], and the free associative
algebra is just the tensor algebra over F[X].
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Free magmas

However we are interested in the free Lie algebra, so we will
review its construction. We will construct the free
nonassociative algebra as the free vector space over the free
magma, and define the free Lie algebra as a quotient.

As usual, an object defined by a universal property is unique up
to isomorphism. However we need to know the existence of the
free object.

We will define the free magma MX to be the set of finite rooted
trees whose leaves are labeled by elements of X. To multiply
two trees, we join their roots.
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Rooted trees and the free magma

A rooted tree is a directed graph that contains no cycles, and
has a initial vertex, the root. Terminal vertices are called leaves.
A tree is called binary if each vertex that is not a leaf has two
successor vertices, one called ‘left’ and one called ‘right’.

Let MX be the set of all finite rooted trees with an element of X
assigned to each leaf.

x y x z y
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The free magma (continued)

To define the product of two rooted labeled binary trees we
adjoin a new root. The old roots become the left and right
siblings of the new root.

x y x
× z y =

x y x z y

Identify x ∈ X with the singleton tree whose leaf is labeled x.
Write x · y or xy as usual for the multiplication in the magma.
Use parentheses to disambiguate expressions.

(xy)x× zy = ((xy)x)(zy) .
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The universal property

With X identified as a subset of MX, the universal property has
the following form.

Universal Property
Let P be any magma and φ : X → P a mapping. Then φ
extends uniquely to a magma homomorphism MX → P.

The universal property is almost obvious.

φ


x y x z y

 = φ
(
((xy)x)(zy)

)

= ((φ(x)φ(y))φ(x))(φ(z)φ(y)).
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The Free Lie algebra

The free Lie algebra on X is also characterized by a universal
property. We seek a Lie algebra LX together with a mapping
j : X → LX that is universal in the following sense:

Universal Property
If φ : X → g is any mapping from X into a Lie algebra, there is a
unique Lie algebra homomorphism Φ : LX → g such that
φ = Φ ◦ j.

Briefly, any homomorphism from X into a Lie algebra factors
through LX. As usual, an object characterized by a universal
property is unique up to isomorphism, but there is an issue of
existence.
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Construction

By a nonassociatiative algebra (meaning, more precisely, a “not
necessarily associative algebra”) we mean a vector space A
with a bilinear map m : A× A→ A that we will think of as a kind
of multiplication. We can construct a free nonassociative
algebra as the free vector space F[MX] over the free magma.
Combining the universal properties of the free magma and the
free vector space, we see that any map from X into a
nonassociative algebra factors uniquely through F[MX].
Now let J be the (two-sided) ideal generated by elements of
F[MX] of the forms:

x · x, x · y + y · x, (x · y) · z + (y · z) · x + (z · x) · y,

for x, y, z ∈ F[MX] or equivalently (by an easy argument) for
x, y, z ∈ MX. The quotient LX = F[MX]/J is a Lie algebra by
construction.
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The universal enveloping algebra of LX

Let V be a vector space. The tensor algebra

T(V) =

∞⊕
k=0

⊗kV

has the universal property that any linear map from V to an
associative algebra factors through T(V).

Proposition
The universal enveloping algebra of LX is isomorphic to the
tensor algebra T(F[X]).

Both these associative algebras have the same universal
property: a homomorphism from X into an associative algebra
factors uniquely through A. If A = U(LX) this follows by
combining the universal property of the free Lie algebra with
the universal property of the enveloping algebra. If A = T(F[X])
it follows from the universal property of the free vector space
and the universal property of the tensor algebra.
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Roots and coroots encode the Weyl group

If g is a finite-dimensional Lie algebra, then a key aspect of its
structure is the Weyl group. It acts on the Cartan subalgebra h
and by duality, on and its dual space h∗. The group is
generated by simple reflections si which are given by

si(x) = x − 〈α∨
i , x〉αi, x ∈ h∗.

Dually
si(y) = y − 〈y,αi〉α∨

i , y ∈ h.

Here αi and α∨
i are particular elements of h and h∗ called the

simple roots and simple coroots. It is easy to check that these
two maps si : h

∗ → h∗ and si : h→ h have order 2 and are
adjoints.
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The Cartan matrix

The matrix A = (aij) where aij = 〈α∨
i ,αj〉 is called the Cartan

matrix of g. A key idea is that from the Cartan matrix, we may
produce a Lie algebra g containing h as an abelian subalgebra.
This construction turns out to work nicely with very little
required of A. We assume:

The entries in A are integers.
The diagonal entries aii = 2

If i 6= j then aij 6 0.
aij 6= 0 if and only if aji 6= 0.

For the deeper theory it is necessary to assume that A is
symmetrizable. This means that there is a diagonal matrix D
such that A = DB where B symmetric. This implies the last
condition.
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Example: Cartan Type A3

Suppose g = sl5 of Cartan type A3. This root system is
simply-laced meaning that all roots have the same length so we
may take αi = α

∨
i . We have

α1 = (1,−1, 0, 0), α2 = (0, 1,−1, 0), α3 = (0, 0, 1,−1)

and

A =

 2 −1 0
−1 2 −1
0 −1 2

 .

For simply laced systems the Cartan matrix is symmetric.
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Example: Cartan Type B3

Next suppose g = so(7) of Cartan type B3. We may identify
h = C3 in such a way that the simple roots and coroots are

α1 = (1,−1, 0), α2 = (0, 1,−1), a3 = (0, 0, 1)

α∨
1 = (1,−1, 0), α∨

2 = (0, 1,−1), a∨3 = (0, 0, 2).

The Cartan matrix is

A =

 2 −1 0
−1 2 −1
0 −2 2

 = DB, D =
(

1
1

2

)
, B =

( 2 −1 0
−1 2 −1
0 −1 1

)
.

So this type is symmetrizable. Here’s the Dynkin diagram:

α1 α2 α3
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Example: Cartan Type C3

Next suppose g = sp(6) of type C3. Now we may identify h = C3

in such a way that

α1 = (1,−1, 0), α2 = (0, 1,−1), a3 = (0, 0, 2),

α∨
1 = (1,−1, 0), α∨

2 = (0, 1,−1), a∨3 = (0, 0, 1).

Now

A =

 2 −1 0
−1 2 −2
0 −1 2

 = DB, D =

(
1

1
1/2

)
, B =

( 2 −1 0
−1 2 −2
0 −2 2

)
.

This type is also symmetrizable. Here’s the Dynkin diagram:

α1 α2 α3
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Reminder: Generalized Cartan matrices

Assume that A = (aij) is an n× n integer matrix such that:

aii = 2;
aij 6 0 if i 6= j.

Instead of assuming that A is symmetrizable, at first it is enough
to assume

aij = 0 if and only if aji = 0.

Such an A will be called a generalized Cartan matrix.
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Realization

Suppose that A is n× n and that ` is the rank of A. Following
Kac, Infinite-dimensional Lie algebras, Section 1.1, let us define
a realization of A to be a pair of vector spaces h, h∗ in duality,
with elements αi ∈ h∗, α∨

i ∈ h. We require:

Both sets {αi} and {α∨
i } are linearly independent;

〈α∨
i ,αj〉 = aij;

n − ` = dim(h) − n.

In the case where A is the Cartan matrix of a semisimple Lie
algebra n = `, so dim(h) = n. In general we need h to be a bit
larger than n. In the affine case, we will find that dim(h) = n + 1.
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Existence of a realization

Proposition (Kac, Proposition 1.1)
There exists a realization of A.

Kac proves that the realization is unique up to an obvious
notion of isomorphism.

Proof. Permute the indices if necessary so that the first ` rows
of A are linearly dependent, and write

A =

(
A1
A2

)
where rank(A1) = rank(A) = `.
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Proof, continued

Consider the n× (2n − `) matrix

C =

(
A1
A2 In−`

)
.

Taking h = C2n−` let α1, · · · ,αn ∈ h∗ be the coordinate
functions, and let α∨

i be the rows of C. Then we have
〈α∨

i ,αj〉 = aij and both sets of vectors {αi} and {α∨
i } are linearly

independent.
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The plan

The goal is to construct a Lie algebra g with a triangular
decomposition

g = n− ⊕ h⊕ n+,

from the Cartan matrix A and its realization. We will see that g
can be infinite-dimensional, though of course h is
finite-dimensional.

The Lie algebra g will be a quotient of a larger Lie algebra

g̃ = ñ− ⊕ h⊕ ñ+

which will be more straightforward to construct. The first step is
to construct g̃. This is done by generators and relations.
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A key idea

Before launching into the construction, we isolate a key idea.

Proposition
Let h be a finite-dimensional abelian Lie algebra and let V be a
module with a weight space decomposition

V =
⊕
µ∈h∗

Vλ.

Let S be subset of the weights in this decomposition. Then V
has a subalgebra U that is maximal with respect to the
condition that

U ∩
⊕
µ∈S

Vµ = 0.
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Proof

This follows from the fact (proved in Lecture 2) that any
submodule W of V has itself a weight decomposition, so

W =
⊕
µ∈h∗

Wµ,

Wµ ⊂ Vµ. So a necessary and sufficient condition for

W ∩
⊕
µ∈S

Vµ = 0

is that Wµ = 0 for µ ∈ S. Thus the sum of all such W also
satisfies this condition.

The Proposition implies, for example that if V is highest weight
module, then V has a maximal proper submodule. We just take
S = {λ} where λ is the highest weight.
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The Lie algebra g̃

We reiterate that the Kac-Moody Lie algebra will be a quotient
of another Lie algebra g̃. The Lie algebra g̃ is generated by h
and generators ei, fi subject to the relations

[ei, fj] = δijα
∨
i (i, j = 1, · · · , n)

[h, h ′] = 0 (h, h ′ ∈ h)

[h, ei] = 〈h,αi〉ei

[h, fi] = −〈h,αi〉fi (i = 1, · · · , n, h ∈ h).

We can take the free Lie algebra on the generators ei, fi and a
basis of h, and quotient by the ideal generated by these
relations.
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Digression: the Serre relations

It is possible to add relations called Serre relations to these to
obtain the Kac-Moody Lie algebra g. The Serre relations are
precisely what is needed to make the adjoint representation
itself integrable. Including these would give a presentation of g.
However what is done in Kac’s book is to omit the Serre
relations, producing this Lie algebra g̃, then obtain g as a
quotient.

The Serre relations have the form

ad(ei)
1−aijej = − ad(fi)1−aij fj = 0

It is easy to see (conceptually) why these should be true and
we will consider them later when we discuss integrability.



Free Lie algebras Kac-Moody Lie algebras

The main theorem

Theorem (Theorem 1.2 in Kac)
The Lie algebra ñ+ generated by the ei is free on these
generators, and the algebra ñ− generated by the fi is similarly
free. The Lie algebra g̃ has a weight space decomposition with
finite-dimensional weight spaces. There is a unique ideal r that
is maximal with respect to the condition that r ∩ h = 0.
Furthermore

r = (r ∩ ñ+)⊕ (r ∩ ñ−) .

This was proved independently by Kac and Moody in 1968.
The proof in Moody’s paper (A New Class of Lie Algebras) is
similar to what Kac does in his book. The key idea is to build a
Verma module by hand, and extract key information from it.
This construction is essentially in Jacobson’s 1962 book on Lie
algebras.
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Proof

Proof. Let λ : h −→ C be a linear functional. The proof depends
on constructing the corresponding Verma module by hand.
Since ñ− is larger than the corresponding n− in the quotient g,
this Verma module is larger (but also simpler) than the Verma
module for g.

Once the Verma module is in hand we will extract key
information that will allow us to prove that n− and n+ are free
Lie algebras on the fi and ei, and to obtain the triangular
decomposition. Finishing the proof will use “key idea”
argument.
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Proof (continued)

Let V be an n-dimensional vector space with basis v1, · · · , vn.
We will construct a representation of g̃ on the tensor algebra
T(V). We define

f (a) = vi ⊗ a, a ∈ T(V)

h(1) = λ(h)1, h ∈ h,

and recursively on ⊗sV:

h(vj ⊗ a) = αj(h)vj ⊗ a + vj ⊗ h(a), a ∈ ⊗s−1V

ei(1) = 0

and recursively on ⊗sV:

ei(vj ⊗ a) = δijα
∨
i (a) + vj ⊗ ei(a), a ∈ ⊗s−1V.

These maps are well-defined, depending only on the universal
property of the tensor product. But we have to show that they
satisfy the relations that we’ve imposed on the generators.
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Proof (continued)

The relation
[h, h ′] = 0 (h, h ′ ∈ h)

is obvious since h acts diagonally. We have

(eifj−fjei)(a) = ei(vj⊗a)−vj⊗ei(a) = δijα
∨
i (a)+vj⊗ei(a)−vj⊗ei(a)

so
(eifj − fjei)(a) = δijα

∨
i (a).

We omit the verification of the other two properties

[h, ei] = 〈h,αi〉ei,

[h, fi] = −〈h,αi〉fi (i = 1, · · · , n, h ∈ h).

See Kac for details of these.
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The Lie algebra n− is free

We will argue next that T(V) is a universal enveloping algebra
for n−, and that n− is free on the generators fi.

We have a representation of n− on T(V) from restricting the
representation of g̃ constructed above, hence we have a
homomorphism of U(n−) to T(V), which is a surjection since
the fi map to algebra generators vi of T(V). We wish to argue
that this homomorphism is an isomorphism. Let f be the free
Lie algebra on v1, · · · , vn. We have shown earlier in this lecture
that T(V) ∼= U(f). We have a Lie algebra homomorphism
f −→ n− in which vi 7−→ fi. The kernel of this Lie algebra
homomorphism is contained in the kernel of the composition
T(V) ∼= U(f) −→ U(n−) −→ T(V), which is the identity map, so
actually f ∼= n− . We have proved that n− is free on the
generators fi, and also that its enveloping algebra is T(V).
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Towards the triangular decomposition

Our next task is to argue that

g̃ = n− ⊕ h⊕ n+.

First note that n− +h+n+ = g̃. Indeed n− +h+n+ contains the
generators ei, fi and h and (from the defining relations) is closed
under ad(ei), ad(hi) and ad(h) for h ∈ h, so this much is clear.

However we must argue that the sum n− + h + n+ = g̃ is direct.
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The sum g̃ = n− ⊕ h⊕ n+ is direct

To prove that the sum n− + h + n+ is direct, let n−, h, n+ be
elements of n−, h and n+ such that n− + h + n+ = 0. Apply this
identity to the module 1 ∈ T(V). Then n+(1) = 0 while
h(1) = 〈λ, h〉. We see that n−(1) + 〈λ, h〉 = 0 for all λ ∈ h∗. The
only way 〈λ, h〉 can be independent of λ is if h = 0 and so
n−(1) = 0. We have shown that T(V) may be identified with the
enveloping algebra of n−. With this identification, n− ∈ n−
maps to the element n−(1) ∈ T(V). Since the inclusion of a Lie
algebra in its enveloping algebra is injective, n−(1) = 0 implies
that n− = 0. We have proved that if n− + h + n+ = 0 then h and
n− both vanish, and therefore the sum g̃ = n−⊕ h⊕ n+ is direct.
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Weight space decomposition: n−

We will argue that g̃ has a weight space decomposition. The
first step is to show that n− has a weight space decomposition.
It is an h-module via the adjoint representation.

It follows from PBW that U(n−) ∼= T(V) has a weight space
decomposition with finite multiplicities, since every standard
vector fi1 · · · fik with i1 · · · ik is an h-eigenvector with weight
−αi1 − . . . − αik , and these span n−. Because the αi are linearly
independent, the dimensions of the weight spaces are finite.

Now since n− is an h-submodule of T(V), n− itself has a weight
space decomposition.
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The weight space decomposition (continued)

It is enough to see that each of n−, h and n+ separately have
weight space decompositions. We have discussed n− and of
course h itself is a weight space with eigenvalue 0.

This leaves n+.

We have a automorphism ω : g̃ −→ g̃ such that ω(ei) = −fi,
ω(fi) = −ei and ω(h) = −h, which follows from the presentation
of g̃ by generators and relations. Applying the involution, we
may deduce that n+ is also a free Lie algebra generated by
the ei.
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The ideal r

The last thing to prove is that g̃ has an ideal r that is maximal
with respect to the condition that r ∩ h = 0.

From the weight space decomposition, a necessary and
sufficient condtion for r ∩ h = 0 is that

r ⊆
⊕
α6=0

g̃α.

From this characterization it is obvious that the sum of such r
does not meet h and therefore there is an ideal that is maximal
for the condition that r ∩ h = 0.

The theorem is now proved.
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The definition of the Kac-Moody Lie algebra

Now we may define the Kac-Moody Lie algebra associated to a
generalized Cartan matrix A as follows. We start with a
realization (h, h∗).

Definition
The Lie algebra g is generated by h and generators ei, fi subject
to the relations

[ei, fj] = δijα
∨
i (i, j = 1, · · · , n)

[h, h ′] = 0 (h, h ′ ∈ h)

[h, ei] = 〈h,αi〉ei

[h, fi] = −〈h,αi〉fi (i = 1, · · · , n, h ∈ h).

Additionally, there is a requirement that g has no nonzero ideal
r such that r ∩ h = 0.
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Existence and uniqueness of the Kac-Moody Lie algebra

Proposition
There is a unique Lie algebra g satisfying this definition.

Clearly we may obtain such a Lie algebra by taking g̃ and
quotienting by the ideal r that is maximal with respect to the
condition that r ∩ h = 0. Conversely, given a Lie algebra g with
generators satisfying such relations, there is a homomorphism
g̃ −→ g mapping the generators in g̃ to the generators in g, and
it is easy to see that the kernel of this homomorphism must be
the maximal r such that r ∩ h = 0.
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Finite-dimensional simple Lie algebras

Proposition
Let g be a simple Lie algebra with Cartan matrix A. Then g is
the Kac-Moody Lie algebra associated to A.

This is clear since g has generators with the given relations and
no proper nonzero ideals, a fortiori no nonzero ideals r such
that r ∩ h = 0.
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Affine Lie algebras are Kac-Moody Lie algebras

Theorem
Let g be a finite-dimensional simple Lie algebra. Let ĝ be the
untwisted affine Lie algebra associated to g. Then ĝ is the
Kac-Moody Lie algebra associated to the extended Cartan
matrix Â of g.

We must show that any nonzero ideal r intersects ĥ. We know
that r has a weight space decomposition, so it contains an
element Xn of some Xα where α = α̊+ nδ is a root. Here
X ∈ gα̊. We may find Y ∈ g−̊α such that (X|Y) 6= 0. We have

[Xn, Y−n] = [X, Y]0 + n(X|Y)K.

This is in ĥ so it must vanish. Therefore n = 0 and so α̊ 6= 0.
This implies that [X, Y] 6= 0, but [X, Y] ∈ h, contradiction.
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