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Our story begins

Let g be a finite-dimensional simple Lie algebra. Today we will
construct the associated untwisted affine Lie algebra ĝ in two
steps: first we will make a central extension of C[t, t−1]⊗ g, then
adjoin a derivation.

This construction appeared in the current algebra introduced by
Gell-Mann in quantum field theory in the 1960’s. Affine Lie
algebras occur in many areas of physics and mathematics,
such as conformal field theory.
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The Killing form

We will need is a symmetric bilinear form ( | ) on g that is
ad-invariant. This means that

(ad(x)y|z) = −(y| ad(x)z)

for x, y, z ∈ g. Since ad(x)y = [x, y] is skew-symmetric and (|) is
symmetric, this is equivalent to

([x, y]|z) = (z|[x, y]) = ([z, x]|y).

If g is finite-dimensional, the Killing form is an ad-invariant
symmetric bilinear form. This is

(x|y) = tr(ad(x) ad(y)).

Proposition
The Killing form is invariant.
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Proof

To check invariance, remember the property of the trace
tr(AB) = tr(BA) if A, B are endomorphisms of some vector
space. Using this and the fact that ad is a representation

([x, y]|z) = tr(ad[x, y] ad(z)) =

tr(ad(x) ad(y) ad(z)) − tr(ad(y) ad(x) ad(z))

= tr(ad(y) ad(z) ad(x)) − tr(ad(y) ad(x) ad(z)) =

tr(ad(y) ad([z, x])) = (y|[z, x]).
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The cocycle

The tensor product of a commutative (and associative) algebra
A with a Lie algebra g is a Lie algebra. To make A⊗ g into a Lie
algebra, define

[a⊗ X, b⊗ Y] = ab⊗ [X, Y].

The skew-symmetry and Jacobi identities are easy to check.

Thus we may consider the Lie algebra gt = C[t, t−1]⊗ g with
spanned by elements of the form Xn = tn ⊗ X (n ∈ Z) subject to
the bracket

[tn ⊗ X, tm ⊗ Y] = tn+m ⊗ [X, Y].

Now we can define a 2-cocycle φ : gt ⊗ gt −→ C by

φ(Xn, Ym) = nδn,−m(X|Y) .
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The cocycle relation

Let us check that this is a cocycle. We compute

φ([Xn, Ym], Zp) = δn+m+p,0(n + m)([X, Y], Z).

Now φ([Xn, Ym], Zp) vanishes unless n + m + p = 0. Assuming
this,

φ([Xn, Ym], Zp) = (n + m)([X, Y]|Z).

Now

φ([Xn, Ym], Zp) + φ([Ym, Zp], Xn) + φ([Zp, Xn], Ym)

= (n + m)([X, Y]|Z) + (m + p)([Y, Z]|X) + (p + n)([Z, X]|Y).

This vanishes because ([X, Y]|Z) is invariant under cyclic
permutations of the indices, and n + m + p = 0. Also φ is
skew-symmetric, so it is a 2-cocycle.
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The affine Lie algebra

Now let ĝ ′ be the Lie algebra obtained as a central extension
using this cocycle:

0 −→ C −→ ĝ ′ −→ gt −→ 0.

We will denote the image of 1 ∈ C as K.

Finally, there is a derivation d : gt −→ gt defined by d = t d
dt , so

d(Xn) = nXn. This may be considered a derivation of ĝ ′.
Adjoining this gives the affine Lie algebra ĝ. Thus

[Xn + λK + µd, Ym + ρK + νd]

= [X, Y]n+m + δn,−mn(X|Y)K + µmYm − νnXn .

ĝ ′ is the derived Lie algebra [ĝ, ĝ]. It has all the interesting
representations of ĝ but ĝ is better to work with.
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Orthogonality of root spaces

Lemma
Suppose g is a Lie algebra with a weight space decomposition

g =
⊕
α

gα

with respect to the abelian subalgebra h. Let ( | ) be an
ad-invariant bilinear form on g. Then gα and gβ are orthogonal
unless α = −β.

Proof. If a 6= −β find H ∈ h such that α(H) 6= −β(H). If X ∈ gα
and y ∈ gβ then

α(H)(X|Y) = ([H, X]|Y) = −(X|[H, Y]) = −β(H)(X|Y).

Therefore (X|Y) = 0.
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Embedding g in ĝ

The map X 7−→ X0 is a Lie algebra homomorphism g −→ ĝ so
the affine Lie algebra ĝ contains a copy of g.

Now suppose that the finite-dimensional Lie algebra g is a
simple Lie algebra with root system Φ with respect to a Cartan
subalgebra h. Thus h is a maximal abelian subalgebra h and g
has a weight space decomposition

g =
⊕
α

gα, g0 = h.

The root spaces gα with α ∈ Φ are one-dimensional. We will
generally denote them Xα instead of gα. We have a triangular
decomposition

g = n− ⊕ h⊕ n+, n± =
⊕

α∈Φ±

Xα.
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Embedding h in ĥ

We identify g and in particular h with their images under the
map X 7→ X0, which is a Lie algebra homomorphism g −→ ĝ.
Let ĥ = h⊕ CK ⊕ Cd, which is a maximal abelian subalgebra of
ĝ. Its dimension is dim(h) + 2.

The Cartan subalgebra h of the finite dimensional Lie algebra g
is a subalgebra of the Cartan subalgebra ĥ = h⊕ CK ⊕ Cd. It
will be convenient to consider h∗ to be a subspace of ĥ∗. This
means we want a canonical extension of any linear functional λ
on h to ĥ. We define the extension to be zero on CK ⊕ Cd.
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The null root δ

Note that if α is a root of g, this extension makes it a root of ĝ.
Let us consider why this is true. If Xα ∈ g spans the root space
for α, so [H, Xα] = α(H)Xα for H ∈ h, then we are identifying Xα

with (Xα)0 ∈ g. The identity [H, (Xα)0] = α(H)(Xα)0 defines an
extension to h and from the formula

[Xn + λK + µd, Ym + ρK + νd]

= [X, Y]n+m + δn,−mn(X|Y)K + µmYm − νnXn .

we see that α(K) = α(d) = 0.

We define δ ∈ ĥ∗ to be the linear functional that is zero on
ĥ ′ = h⊕ CK but δ(d) = 1. This too is a root, with
multiplicity r = dim(h). Indeed, h1 is the root eigenspace.
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The root space decomposition of ĝ

Proposition

The space ĥ is a maximal abelian subalgebra of ĝ. We have a
weight space decomposition

ĝ = ĥ⊕
⊕
n∈Z
n6=0

X̂nδ ⊕
⊕
n∈Z
α∈Φ

X̂α+nδ.

Here X̂nδ (n 6= 0) equals hn and has dimension dim(h). The
space X̂α+nδ is one-dimensional and is spanned by (Xα)n.
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Proof

This is easy to prove from the formula

[Xn + λK + µd, Ym + µK + νd]

= [X, Y]n+m + δn,−mn(X|Y)K + µmYm − νnXn .

From this H ∈ h we have (identifying H = H0). So if X ∈ Xα we
have

[H, Xm] = α(H)Xm, [K, Xm] = 0, [d, Xm] = mXm.

Thus for Ĥ ∈ ĥ we have

[Ĥ, Xm] = (α+ mδ)(Ĥ)Xm.

For the spaces X̂nδ = hn we also check easily that

[Ĥ, (H ′)n] = nδ(Ĥ)(H ′)n.
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The root space decomposition

Thus ĝ has the following roots with respect to the Cartan
subalgebra ĥ:

The real roots α+ nδ with α ∈ Φ and n ∈ Z; these have
multiplicity 1;
The imaginary roots nδ with 0 6= n ∈ Z; these have
multiplicity dim(h).

So let Φ̂ be the set of roots of ĝ as enumerated above. We wish
to partition these into positive and negative roots. A real root
α+ nδ is defined to be positive if either n > 0 or n = 0 and
α ∈ Φ+. An imaginary root nδ (n 6= 0) is positive if n > 0. Let
Φ̂+ and Φ̂− be the positive and negative roots.
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The simple roots

A positive root α is simple if it is real, and if there is no
decomposition of α as a sum of a sum of other positive roots.
Let α1, · · · ,αr be the simple roots of g. It is easy to see that
these are simple roots of ĝ. However there is one more simple
root that we will now define. Let θ ∈ Φ be the highest root of g.
We will call the positive root δ− θ the affine root.

Proposition
The root α0 = δ− θ is a simple root. The simple roots are

{α0,α1, · · · ,αr}.
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Proof

We are slightly modifying the definition of α0 that we used in
discussing finite-dimensional simple Lie algebras, where we
defined α0 = −θ. Shifting by δ has important advantages, the
first one being that the αi are now linearly independent. Recall
that

θ =

r∑
i=1

aiαi

in terms of the marks (or labels) discussed in Lecture 3. Thus
(with a0 = 1)

δ =

r∑
i=0

aiαi

It is easy to see that there is no way to write δ− θ as a sum of
positive roots, but any positive root that is not in the above list
can be decomposed as a sum of other positive roots.



Untwisted affine Lie algebras The Weyl group Level

The coroots

We also have coroots α∨
i ∈ h defined for i = 1, · · · , r. We

define α∨
0 by requiring

K =

r∑
i=0

a∨i α
∨
i .

With a∨0 = 1, this means

α∨
0 = K −

r∑
i=1

a∨i α
∨
i = K − θ∨

where θ∨ is the coroot of g associated to the highest root θ.
(Note: θ∨ is not the highest root of Φ∨ if Φ is not simply laced.
Indeed, θ∨ is a short root, and the highest root is a long root.
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The Cartan matrix

Lemma
Let (aij)

n
i,j=0 be the extended Cartan matrix of the

finite-dimensional Lie algebra g. Then

aij = 〈α∨
i ,αj〉.

We gave definitions of α0 and α∨
0 as elements of h∗ and h in

Lecture 3, but now we have changed these definitions. Let α̊0
and α̊∨

0 be the Lecture 3 affine root and coroot, so now
α0 = α̊0 + δ and α∨

0 = α̊∨
0 + K.

By definition aij = 〈α̊∨
i , α̊j〉. Now 〈K, λ〉 = 0 if λ ∈ h∗ since we

defined the extension of λ ∈ h∗ to a functional on ĥ by making it
zero on K and d. Also 〈H, δ〉 = 0 if H ∈ h ′ = h⊕ CK. The
Lemma follows.
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Example

The simplest affine Lie algebra is ŝl(2). Here is the root system.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

δ

α1

α0

The red nodes are positive roots, the blue nodes are negative.

The Cartan matrix is
(

2 −2
−2 2

)
.
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The Weyl group

Our goal is to define the affine Weyl group, with actions on ĥ
and ĥ∗. These are to be infinite Coxeter groups generated by
simple reflections si (i = 0, 1, · · · , r) to be given by the formulas

si(x) = x − 〈α∨
i , x〉αi, x ∈ ĥ∗,

si(x) = x − 〈x,αi〉α∨
i , x ∈ ĥ.

The group these generate is isomorphic to the affine Weyl
group defined in Chapter 3, though now they are acting on a
larger vector space ĥ∗.
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Review: finite-dimensional semisimple Lie algebras

Recall that if g is a finite-dimensional semisimple Lie algebra
then the integral weights are the elements λ ∈ h∗ such that
〈α∨

i , λ〉 ∈ Z. They form a lattice, P ⊆ h∗. The dominant weights
λ are the elements of P such that 〈α∨

i , λ〉 is a nonnegative
integer number for i = 1, · · · , r. Let P+ be the cone of dominant
weights.



Untwisted affine Lie algebras The Weyl group Level

Integral weights and dominant weights

We adapt this definition to the affine Lie algebra ĝ. We call
λ ∈ ĥ∗ an integral weight if λ(α∨

i ) ∈ Z. Let P be the set of
integral weights. This is not quite a lattice since Cδ ⊆ P.
However P/Cδ is a lattice an by abuse of language we will call
P the weight lattice. An integral weight λ is called dominant if
λ(α∨

i ) are nonnegative integers. Let P+ be the set of dominant
weights.

The dominant weights are special because the irreducible
highest weight representation L(λ) is integrable in that is can be
lifted to the simply-connected Lie group G such that Lie(G) = g.
This is a more basic property than the fact that L(λ) is
finite-dimensional.
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Integrability and the Weyl group

Integrability implies that V = L(λ) has a weight space
decomposition

V =
⊕
λ∈P

Vλ

where the weight multiplicities dim(Vλ) are W-invariant.

Affine Lie algebras do have group analogs, the loop groups.
However there is no need to construct these in order to
generalize the notion of integrability. For a general Kac-Moody
Lie algebra g there is a Weyl group, and a notion of integrability
that implies that the weight multiplicities are W-invariant.

Integrability will be discussed in a later lecture. Today we will
focus on the Weyl group and its action on the weights.
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The weight lattice

Returning to the affine algebra ĝ we defined the weight lattice P̂
to be the set of λ ∈ ĥ∗ such that λ(α∨

i ) ∈ Z.
We define elements Λ0, · · · ,Λr of P̂ by

〈α∨
i ,Λj〉 = δi,j, 〈d,Λj〉 = 0.

P contains Cδ and the Λi are a basis of the free abelian group
P/Cδ. Remembering that

K =

r∑
i=0

a∨i α
∨
i ,

we have
〈K,Λj〉 = a∨j .

The dominant weights have the form
∑

niΛi + cδ with ni ∈ N
and c ∈ C.
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Action of W on roots

For now let us investigate the effect of the Weyl group on roots.
We begin by classifying the roots as positive and negative. First
the real roots α+ nδ (α ∈ Φ) are positive if either n > 0 or n = 0
and α ∈ Φ+. An imaginary root nδ (n 6= 0) is positive if n > 0.
Any root that is not positive is negative. Let Φ̂+ be the positive
roots, and Φ̂− be the set of negative roots.

Recall that the imaginary root δ is orthogonal to ĥ ′ = ĥ⊕ CK
while δ(d) = 1. Since the α∨

i ∈ ĥ⊕ CK, we see that

si(δ) = δ− 〈α∨
i , δ〉αi = δ.

Thus the Weyl group does not move the imaginary roots!
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A property of root systems

Let us consider a root system Φ with a finite Weyl group W. It is
a well-known, and very important, property of Φ that if si is the
simple reflection corresponding to the simple root αi, then αi is
the unique positive root α such that si(α) ∈ Φ−. Thus si

permutes Φ+ − {αi}.

α1

α2

θ

α0

Showing that s1 permutes Φ− {α1} for G2
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The case of the affine Weyl group

The same is true of the affine Weyl group. Of course
si(αi) = −αi (since 〈α∨

i ,αi〉 = 2). But this is the only positive
root that is mapped to a negative root by si.

Proposition

If α ∈ Φ̂+ is a positive root distinct from αi then si(α) is a
positive root.

Below: the simple reflections s0, s1 for ŝl(2).

δ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

α1

α0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

δ

α1

α0
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Proof: the case 1 6 i 6 r

Write α = α̊+ nδ where α̊ ∈ Φ. For i > 1 we have

si(α) = si(α̊+ nδ) = si(α̊) + nδ.

Since α̊ ∈ Φ and si ∈ W (the finite Weyl group)
si(α̊) + nδ ∈ Φ+ nδ. If n > 0 this is a positive root by definition
since Φ+ nδ ⊆ Φ̂+. On the other hand if n = 0 we remember
that α̊ is a positive root of Φ that is distinct from Φi, and so si(α)
is also a positive root. The case i > 0 is proved.
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The case i = 0

Now consider the case where i = 0. As before

s0(α) = s0(α̊) + nδ = α̊+ nδ− 〈α∨
0 , α̊+ nδ)α0.

We recall that α∨
0 = K − θ∨ where θ is the highest root, and

α0 = δ− θ. Since 〈K, α̊+ nδ〉 = 0 and 〈α∨
0 , δ〉 = 0

s0(α) = α̊+ nδ+ 〈θ∨, α̊〉α0 = α̊+ nδ− 〈θ∨, α̊〉θ+ 〈θ∨, α̊〉δ

= rθ(α̊) + (n + 〈θ∨, α̊〉)δ.

We will argue that either n + 〈θ∨, α̊〉 > 0 and rθ(α̊) is a positive
root, or n + 〈θ∨, α̊〉 > 1. In either case, this is enough to show
that s0(α) ∈ Φ̂+.
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Proof (continued)

Lemma

The inner product 〈θ∨, α̊〉 = −2 if α̊ = −θ. Otherwise
〈θ∨, α̊〉 > −1. If 〈θ∨, α̊〉 = −1, then rθ(α̊) is a positive root. If α̊
is a positive root, then 〈θ∨, α̊〉 > 0.

Of course 〈θ∨,−θ〉 = −2. To show that 〈θ∨, α̊〉 > −1 if α̊ 6= −θ,
we note that θ is a long root. Thus it is enough to show that if
θ ∈ Φ is a long root, and α̊ 6= −θ, then 〈θ∨, α̊〉 > −1. To prove
this, note that θ and α̊ can be embedded in a root system of
rank 1 or 2, so it is sufficient to check this for the Cartan types
A2, B2, G2, and this is easy to do.
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Proof of the Lemma (concluded)

Suppose that 〈θ∨, α̊〉 = −1. Then rθ(α̊) = α̊− 〈θ∨, α̊〉θ = α̊+θ.
This is a root since rθ(Φ) = Φ, and it cannot be a negative root
since if α̊+ θ = −γ with γ ∈ Φ+ then θ+ γ = −α̊ ∈ Φ, which is
a contradiction beause θ+ γ cannot be a root because θ is the
highest root. So rθ(α̊) is a positive root.

It remains to show that if α̊ is a positive root then 〈θ∨, α̊〉 > 0.
Clearly we may assume that α̊ = αi is a simple reflection.
Consider sαi(θ) = θ− 〈α∨

i , θ〉αi. Since θ is the highest root, we
must have 〈α∨

i , θ〉 > 0. (Otherwise sαi(θ) would be higher.)
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The end of the proof

Returning to the identity

s0(α) = rθ(α̊) + (n + 〈θ∨, α̊〉)δ,

the Lemma contains all the information we need to check that
this is in Φ̂+. Indeed, since n > 0, the only way n + 〈θ∨, α̊〉 can
be negative is if n = 1 and α̊ = −θ, but in that case
α = δ− θ = α0 and this case is excluded by the hypothesis of
the Proposition. Therefore n + 〈θ∨, α̊〉 > 0. Now n + 〈θ∨, α̊〉 > 0
unless n = 1 and 〈θ∨, α̊〉 = −1. In this case rθ(α̊) is a positive
root and in every case we are done.
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Formulaire

Here are the pairings of particular elements of ĥ∗ with ĥ.

α0 αj(j > 0) δ Λ0 Λj(j > 0)
α∨

0 1 a0j 0 1 0
α∨

i (i > 0) ai0 aij 0 0 δij

K 0 0 0 1 a∨j
d 1 0 1 0 0

α0 = δ− θ, α∨ = K − θ∨.

r∑
i=0

aiαi = δ,

r∑
i=0

a∨i α
∨
i = K,

si(x) = x − 〈α∨
i , x〉αi, x ∈ ĥ∗,

si(x) = x − 〈x,αi〉α∨
i , x ∈ ĥ.
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Sage

CT = CartanType("B3~")
RS = RootSystem(CT)
WL = RS.weight_lattice(extended=True)
alpha = WL.alpha()
alphacheck = WL.alphacheck()
delta = WL.null_root()
Lambda = WL.fundamental_weights()
K = WL.null_coroot()
a = CT.col_annihilator()
ac = CT.row_annihilator()

Here is Sage code to create most of the elements of ĥ and ĥ∗

on the previous page. Be sure and use extended=True in
creating ĥ∗. Unfortunately Sage does not create ĥ but rather ĥ ′

which omits d.
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Sage

Then the inner products can be checked for Type B3:

sage: [Lambda[i].scalar(K) for i in [0..3]]
[1, 1, 2, 1]
sage: [ac[i] for i in [0..3]]
[1, 1, 2, 1]
sage: m = Matrix([[alpha[j].scalar(alphacheck[i])

for j in [0..3]] for i in [0..3]]); m
[ 2 0 -1 0]
[ 0 2 -1 0]
[-1 -1 2 -1]
[ 0 0 -2 2]
sage: m == CT.cartan_matrix()
True



Untwisted affine Lie algebras The Weyl group Level

Level

If λ ∈ h∗, the value 〈λ, K〉 is called the level of λ. Thus every
root has level 0, including the null root δ. But the fundamental
weight Λj has value a∨j . In particular Λ0 has level 1, and in
Type A all Λi have level 1.

Note that 〈K,αi〉 = 0. From this and the formula

si(x) = x − 〈α∨
i , x〉αi, x ∈ ĥ∗,

it follows that λ and w(λ) are of the same level for w ∈ W.
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Affine Weyl groups

We have introduced two notions of the affine Weyl group. In
Lecture 3 we defined the affine Weyl group as a group of
reflections in h∗, where h is the Cartan subalgebra of the
finite-dimensional simple Lie algebra g. This affine Weyl group
contains translations by roots as a normal subgroup and is
actually the semidirect product of the finite Weyl group by the
translations.

In this Lecture we have another group that we are also calling
the affine Weyl group. This Waff acts linearly on ĥ∗.

Why are the two affine Weyl groups the same?
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Action on Level 0

Since the level k elements of ĥ∗ are preserved by Waff , we may
study the action of Waff on weights of fixed level. The weights of
level 0 are spanned by the roots, and Waff acts by permuting
them (but without moving the imaginary roots).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

δ

α1

α0
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Action on level 1

Let us do an experiment, and compute part of the Weyl orbit of
Λ0 for the ŝl(2). We could do this by hand using information in
the formulaire, or we can use Sage.

RS = RootSystem("A1~")
WL = RS.weight_lattice(extended=True)
Lambda = WL.fundamental_weights()
alpha = WL.alpha()
delta = WL.null_root()
W = WL.weyl_group(prefix="s")
(s0,s1) = W.simple_reflections()
ws = [s1*s0*s1*s0*s1,s0*s1*s0*s1,s1*s0*s1,s0*s1,s1,
W.one(),s0,s1*s0,s0*s1*s0,s1*s0*s1*s0,s0*s1*s0*s1*s0]
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The orbit of Λ0

sage: for w in ws:
....: print ("%s : %s"%(w,Lambda[0].weyl_action(w)))

s1*s0*s1*s0*s1 : 5*Lambda[0] - 4*Lambda[1] - 4*delta
s0*s1*s0*s1 : -3*Lambda[0] + 4*Lambda[1] - 4*delta
s1*s0*s1 : 3*Lambda[0] - 2*Lambda[1] - delta
s0*s1 : -Lambda[0] + 2*Lambda[1] - delta
s1 : Lambda[0]
1 : Lambda[0]
s0 : -Lambda[0] + 2*Lambda[1] - delta
s1*s0 : 3*Lambda[0] - 2*Lambda[1] - delta
s0*s1*s0 : -3*Lambda[0] + 4*Lambda[1] - 4*delta
s1*s0*s1*s0 : 5*Lambda[0] - 4*Lambda[1] - 4*delta
s0*s1*s0*s1*s0 : -5*Lambda[0] + 6*Lambda[1] - 9*delta
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The stabilizer

In the previous slide we considered the dominant weight Λ0 of
level 1 and calculated its Weyl group orbit. We note that every
value appears twice in that table. This is because Λ0 has a
nontrivial stabilizer, which happens to be the subgroup
W = 〈s1〉.

The affine Weyl group is the semidirect product of W and the
infinite cyclic group 〈s1s0〉. So let us repeat the calculation with
this in mind.



Untwisted affine Lie algebras The Weyl group Level

Calculating the orbit

sage: t = s1*s0
sage: for k in [-4..4]:
....: print ("t^%s : %s"%(k,Lambda[0].weyl_action(t^k)))
t^-4 : -7*Lambda[0] + 8*Lambda[1] - 16*delta
t^-3 : -5*Lambda[0] + 6*Lambda[1] - 9*delta
t^-2 : -3*Lambda[0] + 4*Lambda[1] - 4*delta
t^-1 : -Lambda[0] + 2*Lambda[1] - delta
t^0 : Lambda[0]
t^1 : 3*Lambda[0] - 2*Lambda[1] - delta
t^2 : 5*Lambda[0] - 4*Lambda[1] - 4*delta
t^3 : 7*Lambda[0] - 6*Lambda[1] - 9*delta
t^4 : 9*Lambda[0] - 8*Lambda[1] - 16*delta
sage: alpha[1]
-2*Lambda[0] + 2*Lambda[1]

So with t = s1s0,

tk(Λ0) = Λ0 − kα1 − k2δ.
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The orbit of Λ0 in ĥ∗

Λ0

t−1(Λ0) tΛ0

t−2(Λ0) t2Λ0

t−3(Λ0) t3Λ0

tk(Λ0) = Λ0 + kα1 − k2δ

t = s1s0
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The level k action

We defined an affine Weyl group in Lecture 3 acting on h∗. This
group is generated by s0, s1, · · · , sr where s1, · · · , sr are the
simple reflections in the finite Weyl group (acting on h∗) and s0
is the reflection in the hyperplane

{x | 〈θ∨, x〉 = 1}.

We will call this the classical level 1 affine Weyl group.

We could equally well consider the group generated by
s1, · · · , sr and the reflection in the hyperplane

{x | 〈θ∨, x〉 = k}.

The action would be similar but the fundamental alcove would
be larger, and contain more roots.
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The relationship between the two affine Weyl groups

The affine Weyl group acts on ĥ∗. This vector space is two
dimensions bigger than h∗, but we will cut it down in two ways.

Since the affine Weyl group fixes δ, there is an induced action
on ĥ∗/Cδ.

Moreover we may fix the level k and consider the action on the
level k (affine) subspace of ĥ∗/Cδ.

Theorem

The action of Waff on the level k subspace of ĥ∗/Cδ is
equivalent to the classical level k action. The equivalence is the
map

λ 7→ λ+ kΛ0 mod Cδ .
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Proof

If 1 6 i 6 r, then

si(Λ0) = Λ0 − 〈α∨
i ,Λ0〉αi = Λ0,

because 〈α∨
i ,Λ0〉 = 0. So this map is equivariant for si if i 6= 0.

We must check equivariance for s0. Indeed

s0(λ+ kΛ0) = λ+ kΛ0 − 〈α∨
0 , λ+ kΛ0〉α0 =

λ+ kΛ0 −
(
〈θ∨, λ〉+ k

)
(δ− θ).

We may discard the δ since we are quotienting by Cδ. Thus

s0(λ+ kΛ0) = rθ(λ) + kθ+ kΛ0.
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