Lecture 3: affine Lie algebras
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Our story begins

Let g be a finite-dimensional simple Lie algebra. Today we will
construct the associated untwisted affine Lie algebra g in two
steps: first we will make a central extension of C[t,7~!] ® g, then
adjoin a derivation.

This construction appeared in the current algebra introduced by
Gell-Mann in quantum field theory in the 1960’s. Affine Lie
algebras occur in many areas of physics and mathematics,
such as conformal field theory.



Untwisted affine Lie algebras
0000000000000 00000

The Killing form

We will need is a symmetric bilinear form ( | ) on g that is
ad-invariant. This means that

(ad(x)ylz) = —(y[ad(x)z)

for x,y,z € g. Since ad(x)y = [x,y] is skew-symmetric and (]) is
symmetric, this is equivalent to

(bx, yllz) = (zllx, y1) = (lz, xly).

If g is finite-dimensional, the Killing form is an ad-invariant
symmetric bilinear form. This is

(xly) = tr(ad(x) ad(y)).

Proposition

The Killing form is invariant.
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Proof

To check invariance, remember the property of the trace
tr(AB) = tr(BA) if A, B are endomorphisms of some vector
space. Using this and the fact that ad is a representation

(lx,yIz) = tr(adlx, y] ad(z)) =

tr(ad(x) ad(y) ad(z)) — tr(ad(y) ad(x) ad(z))
= tr(ad(y) ad(z) ad(x)) — tr(ad(y) ad(x) ad(z)) =
tr(ad(y) ad(lz,x])) = (yllz, x]).
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The cocycle

The tensor product of a commutative (and associative) algebra
A with a Lie algebra g is a Lie algebra. To make A ® g into a Lie
algebra, define

@X,bY] =ab® [X,Y].

The skew-symmetry and Jacobi identities are easy to check.

Thus we may consider the Lie algebra g, = Clt,1~'] ® g with
spanned by elements of the form X,, = /' ® X (n € Z) subject to
the bracket

"X, M"Y =r""e XY

Now we can define a 2-cocycle ¢ : g, ® g, — C by

’ d)(Xna Yy) = nén,—m(X|Y) ‘
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The cocycle relation

Let us check that this is a cocycle. We compute
d)([Xn, Ym]yzp) = 5n+m+p,0(n + m)([X, Y]>Z)~

Now & ([X,, Y], Z,) vanishes unless n + m + p = 0. Assuming
this,
(X, Yinl, Z,) = (n+m) (X, Y1|Z).

Now
G ([Xn, Yinl, Zp) + & (Y, Zpl, Xu) + (12, Xl Vi)

= (n+m)(IX, Y]|Z) 4+ (m + p)([¥, ZIIX) + (p + n)([Z, X]|Y).

This vanishes because ([X, Y]|Z) is invariant under cyclic
permutations of the indices, and n +m +p = 0. Also ¢ is
skew-symmetric, so it is a 2-cocycle.
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The affine Lie algebra

Now let g’ be the Lie algebra obtained as a central extension
using this cocycle:

0—C—g —g —0.

We will denote the image of 1 € C as K.

Finally, there is a derivation d : g; — g, defined by d = t%, o]
d(X,) = nX,. This may be considered a derivation of g’.
Adjoining this gives the affine Lie algebra g. Thus

(X, + AK + ud, Yy + pK + vd|

= [X, Y]n—!—m + 6n,—mn(X|Y)I< + wmY,, —vnX, .

g’ is the derived Lie algebra [g, gl. It has all the interesting
representations of g but g is better to work with.
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Orthogonality of root spaces

Lemma
Suppose g is a Lie algebra with a weight space decomposition

g:@goc
o

with respect to the abelian subalgebra . Let (| ) be an
ad-invariant bilinear form on g. Then g, and gg are orthogonal
unless o = —f.

Proof. If a # —f find H € h such that x(H) # —pB(H). If X € g«
and y € gg then

«(H)(X]Y) = ([H,X]]Y) = —(X|[H, Y]) = —B(H)(X]Y).

Therefore (X|Y) = 0.
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Embedding g in g

The map X — X is a Lie algebra homomorphism g — g so
the affine Lie algebra g contains a copy of g.

Now suppose that the finite-dimensional Lie algebra g is a
simple Lie algebra with root system ® with respect to a Cartan
subalgebra h. Thus b is a maximal abelian subalgebra h and g
has a weight space decomposition

1=Poa.  w=b
x

The root spaces g, with o« € ® are one-dimensional. We will
generally denote them X instead of go. We have a triangular
decomposition

g=n_ohon., = (P X
xedD
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Embedding  in b

We identify g and in particular h with their images under the
map X — Xo, which is a Lie algebra homomorphism g — g.
Let h = h & CK & Cd, which is a maximal abelian subalgebra of
g. Its dimension is dim(h) + 2.

The Cartan subalgebra b of the finite dimensional Lie algebra g
is a subalgebra of the Cartan subalgebra h = h & CK @ Cd. It
will be convenient to consider h* to be a subspace of h*. This
means we want a canonical extension of any linear functional A
on b to h. We define the extension to be zero on CK & Cd.
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The

Note that if « is a root of g, this extension makes it a root of g.
Let us consider why this is true. If X, € g spans the root space
for «, so [H,X«] = a(H)X, for H € b, then we are identifying X
with (X« )o € g. The identity [H, (X« )o] = a(H)(X«)o defines an
extension to h and from the formula

X, + AK + ud, Yy + 0K + vd
= s Y]ner + 6n’,ml’l(X|Y)K + wmY,, —vnX, .

we see that «(K) = «(d) = 0.

We define 6 € h* to be the linear functional that is zero on
h’ = bh @ CK but 6(d) = 1. This too is a root, with
multiplicity r = dim(h). Indeed, b, is the root eigenspace.
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The root space decomposition of g

The space by is a maximal abelian subalgebra of §. We have a
weight space decomposition

QZG@@iné@ @ :%terné'

neZ nez
n#0 xe®

Here X5 (n # 0) equals b, and has dimension dim(h). The
space X, 1,5 Is one-dimensional and is spanned by (X )y.
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Proof

This is easy to prove from the formula
(X, + AK + ud, Yy, + uK + vd]

= X, Ypym + On—mn(X|Y)K + umY,, — vnX, .

From this H € h we have (identifying H = Hy). So if X € X, we
have

(H, X)) = «(H)X,n, K, X, =0, d, X,,] = mX,,.
Thus for A € h we have
[H, X,) = (o¢+ m8)(H)X,p.
For the spaces X5 = b, we also check easily that

[H, (H"),) = n8(H)(H'),.
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The root space decomposition

Thus g has the following roots with respect to the Cartan
subalgebra bh:

@ The real roots o + nd with « € ® and n € Z; these have
multiplicity 1;
@ The imaginary roots nd with 0 # n € Z; these have
multiplicity dim(b).
So let @ be the set of roots of g as enumerated above. We wish
to partition these into positive and negative roots. A real root
o + nd is defined to be positive if either n > 0 or n = 0 and
o€ ot. An imaginary root nd (n # 0) is positive if n > 0. Let
®* and @~ be the positive and negative roots.
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The simple roots

A positive root « is simple if it is real, and if there is no
decomposition of « as a sum of a sum of other positive roots.
Let oy, -+ -, &, be the simple roots of g. It is easy to see that
these are simple roots of g. However there is one more simple
root that we will now define. Let 6 € @ be the highest root of g.
We will call the positive root 6 — 6 the affine root.

Proposition

The root «y = 6 — 0 is a simple root. The simple roots are

{owg, o1, - -, &)
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Proof

We are slightly modifying the definition of «, that we used in
discussing finite-dimensional simple Lie algebras, where we
defined oy = —6. Shifting by & has important advantages, the
first one being that the «; are now linearly independent. Recall

that .
0= Z a;x;
i=1
in terms of the marks (or labels) discussed in Lecture 3. Thus
(with ap = 1)
6= Z a; X;
i=0

It is easy to see that there is no way to write 6 — 6 as a sum of
positive roots, but any positive root that is not in the above list
can be decomposed as a sum of other positive roots.
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The coroots

We also have coroots « € b defined fori =1,---,r. We
define o’ by requiring

,
K= Zai\/ociv.
i=0
With a;” = 1, this means
,
O
i=1

where 0V is the coroot of g associated to the highest root 6.
(Note: 8V is not the highest root of @V if @ is not simply laced.
Indeed, 0" is a short root, and the highest root is a long root.
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The Cartan matrix

Let (ay)};_, be the extended Cartan matrix of the

finite-dimensional Lie algebra g. Then

aj = <0‘zy7 o‘j>'

We gave definitions of oy and « as elements of h* and b in
Lecture 3, but now we have changed these definitions. Let &
and & be the Lecture 3 affine root and coroot, so now

xo = &+ 8 and oy = &y + K.

By definition a; = (&, &;). Now (K,\) = 0if A € h* since we
defined the extension of A € h* to a functional on h by making it
zeroon K and d. Also (H,8) =0if H e h/ =h @ CK. The
Lemma follows.
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Example

The simplest affine Lie algebra is s[(2). Here is the root system.

The red nodes are positive roots, the blue nodes are negative.

The Cartan matrix is <_22 _22>
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The Weyl group

Our goal is to define the affine Weyl group, with actions on b
and h*. These are to be infinite Coxeter groups generated by
simple reflections s; (i =0,1,--- ,r) to be given by the formulas
x>oci, X E 6*,

si(x) =x— <(xl~v,

si(x) = x — (x, o), xeb.

The group these generate is isomorphic to the affine Weyl

group defined in Chgpter 3, though now they are acting on a
larger vector space b*.
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Review: finite-dimensional semisimple Lie algebras

Recall that if g is a finite-dimensional semisimple Lie algebra
then the integral weights are the elements A € h* such that
{0/, A) € Z. They form a lattice, P C h*. The dominant weights
A are the elements of P such that («;”, A) is a nonnegative
integer number fori =1,--- ,r. Let P* be the cone of dominant

weights.
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Integral weights and dominant weights

We adapt this definition to the affine Lie algebra g. We call

A € h* an integral weight if A(«’) € Z. Let P be the set of
integral weights. This is not quite a lattice since Cé C P.
However P/C¢ is a lattice an by abuse of language we will call
P the weight lattice. An integral weight A is called dominant if
A(oy”) are nonnegative integers. Let P* be the set of dominant
weights.

The dominant weights are special because the irreducible
highest weight representation L(A) is integrable in that is can be
lifted to the simply-connected Lie group G such that Lie(G) = g.
This is a more basic property than the fact that L(A) is
finite-dimensional.
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Integrability and the Weyl group

Integrability implies that V = L(A) has a weight space
decomposition

where the weight multiplicities dim(V,) are W-invariant.

Affine Lie algebras do have group analogs, the loop groups.
However there is no need to construct these in order to
generalize the notion of integrability. For a general Kac-Moody
Lie algebra g there is a Weyl group, and a notion of integrability
that implies that the weight multiplicities are W-invariant.

Integrability will be discussed in a later lecture. Today we will
focus on the Weyl group and its action on the weights.
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The weight lattice

Returning to the affine algebra g we defined the weight lattice P
to be the set of A € h* such that A(«) € Z.
We define elements Ay, --- , A, of P by

<(Xiv7 /\]> = 5,‘J, <d, /\j> =0.

P contains C6 and the A; are a basis of the free abelian group
P/C6. Remembering that

,
K= E al-vocl-v,
i=0

we have
<K, /\j> = a}/.

The dominant weights have the form > n;A; + ¢ with n; € N
and c € C.
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Action of W on roots

For now let us investigate the effect of the Weyl group on roots.
We begin by classifying the roots as positive and negative. First
the real roots o + nd (x € @) are positive if eithern >00rn =20
and « € ®*. An imaginary root nd (n # 0) is positive if n > 0.
Any root that is not positive is negative. Let ®* be the positive
roots, and @~ be the set of negative roots.

Recall that the imaginary root § is orthogonal to b’ = h & CK
while 5(d) = 1. Since the o € h & CK, we see that

5i(8) =8 — (a0, 8)ot; = 6.

Thus the Weyl group does not move the imaginary roots!
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A property of root systems

Let us consider a root system ® with a finite Weyl group W. It is
a well-known, and very important, property of @ that if s; is the
simple reflection corresponding to the simple root «;, then «; is
the unique positive root « such that s;(«) € ®—. Thus s;
permutes @+ — {«;}.

e
- fG
S I
e o: ° °
|
° : e X
|
° o o °
|
X ¢
|

Showing that s; permutes ® — {«;} for G,
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The case of the affine Weyl group

The same is true of the affine Weyl group. Of course
si(o) = —ay (since (&, o) = 2). But this is the only positive
root that is mapped to a negative root by s;.

Proposition

If x € Ot is a positive root distinct from «; then s;(x) is a
positive root.

Below: the simple reflections sy, s; for ;[(2).

e [T
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Proof: thecase 1 <i<r

Write o« = & + nd where & € ®. Fori > 1 we have
si(o) = si(ax +nd) = si(&) + nd.

Since & € ® and s; € W (the finite Weyl group)

si(&) +nd € @ + nd. If n > 0 this is a positive root by definition
since @ +nd C ®@*. On the other hand if n = 0 we remember
that & is a positive root of @ that is distinct from @;, and so s;(«)
is also a positive root. The case i > 0 is proved.
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Thecasei=0

Now consider the case where i = 0. As before
so(o) = so(&) +nd =+ nd— (o<0v, &+ nd)oayg.

We recall that oy’ = K — 6" where 6 is the highest root, and
og = & — 0. Since (K, & +nd) =0 and («y,8) =0

so(a) = & +nd+ (8", &g = & +nd—(8Y,8)0 + (0¥, &)5

= ro(&) + (n+ (8", &))s.

We will argue that either n + (0", &) > 0 and rg(&) is a positive
root, or n + <QV, «) > 1. In either case, this is enough to show
that so(x) € .
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Proof (continued)

The inner product (8, &) = —2 if & = —0. Otherwise
(0V,&) > —1. If (8Y,&) = —1, then ro (&) is a positive root. If &
is a positive root, then (8V, &) > 0.

Of course (8Y,—0) = —2. To show that (6Y, &) > —1 if & # —0,
we note that 6 is a long root. Thus it is enough to show that if
0 € @ is a long root, and & # —0, then (0¥, &) > —1. To prove
this, note that 6 and & can be embedded in a root system of
rank 1 or 2, so it is sufficient to check this for the Cartan types
Ay, B>, G», and this is easy to do.
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Proof of the Lemma (concluded)

Suppose that (8Y, &) = —1. Then ro(&) = & — (0, &)0 = & +0.
This is a root since rg(®) = @, and it cannot be a negative root
since if & + 0 = —y withy € ®* then 6 +y = —& € @, which is
a contradiction beause 6 + vy cannot be a root because 6 is the
highest root. So rg (&) is a positive root.

It remains to show that if & is a positive root then (8Y, &) > 0.
Clearly we may assume that & = «; is a simple reflection.
Consider sq,(0) = 0 — («, 0) ;. Since 0 is the highest root, we
must have («.”,0) > 0. (Otherwise sq,(0) would be higher.)
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The end of the proof

Returning to the identity
SO((X) = ’”e(&) + (n + <e\/a &>)6a

the Lemma contains all the information we need to check that
this is in ®*. Indeed, since n > 0, the only way n + (6Y, &) can
be negative is if n = 1 and & = —0, but in that case

o =& — 0 = y and this case is excluded by the hypothesis of
the Proposition. Therefore n+ (8Y, &) > 0. Now n+ (0¥, &) > 0
unless n =1 and (0¥, &) = —1. In this case rg(&) is a positive
root and in every case we are done.
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Formulaire

Here are the pairings of particular elements of h* with b.

(o)) (Xj(j>0) 5 No /\j(j> 0)
o I ay 0 1 0
(XZ\/(Z > 0) ao ajj 0 O 51"
K o o 0 1 a
d 1 0 1 0 0
xp=56—6, «/ =K—0".
r r
Zaiocizé, Zaivo‘i\/ :K,
i=0 i=0
Si(X) :x—<06,-\/,x>ocl~, XGG*,

S,‘(X) :X—<X7 O('i>0(‘i\/7 X € 6
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CT = CartanType ("B3~")

RS = RootSystem(CT)

WL = RS.weight_lattice (extended=True)
alpha = WL.alpha ()

alphacheck = WL.alphacheck ()

delta = WL.null_root ()

Lambda = WL.fundamental_weights ()

K = WL.null_coroot ()

a = CT.col_annihilator ()

ac = CT.row_annihilator ()

Here is Sage code to create most of the elements of § and h*
on the previous page. Be sure and use extended=True in
creating h*. Unfortunately Sage does not create h but rather b’
which omits d.
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Then the inner products can be checked for Type B3:

sage: [Lambdal[i].scalar(K) for i in [0..3]]

(1, 1, 2, 1]

sage: [ac[i] for 1 in [0..3]]

(1, 1, 2, 11

sage: m = Matrix([[alphal[j].scalar (alphacheck[i])
for 3 in [0..3]] for i in [0..3]]); m

[ 2 0 -1 0]
[ O 2 -1 0]
[-1 -1 2 -1]
[ O 0 -2 2]
sage: m == CT.cartan_matrix()
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If A € b*, the value (A, K) is called the level of A. Thus every
root has level 0, including the null root . But the fundamental
weight A; has value ajv. In particular Ag has level 1, and in
Type A all A; have level 1.

Note that (K, «;) = 0. From this and the formula
Si(X) :x—<06,-\/,x>ocl~, XGG*,

it follows that A and w(A) are of the same level for w € W.
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Affine Weyl groups

We have introduced two notions of the affine Weyl group. In
Lecture 3 we defined the affine Weyl group as a group of
reflections in h*, where b is the Cartan subalgebra of the
finite-dimensional simple Lie algebra g. This affine Weyl group
contains translations by roots as a normal subgroup and is
actually the semidirect product of the finite Weyl group by the
translations.

In this Lecture we have another group that we are also calling
the affine Weyl group. This W,g acts linearly on h*.

Why are the two affine Weyl groups the same?
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Action on Level 0

Since the level k elements of h* are preserved by W., we may
study the action of W, on weights of fixed level. The weights of
level 0 are spanned by the roots, and W,g acts by permuting
them (but without moving the imaginary roots).
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Action on level 1

Let us do an experiment, and compute part of the Wey! orbit of
Ao for the s[(2). We could do this by hand using information in
the formulaire, or we can use Sage.

RS = RootSystem ("Al~")

WL = RS.weight_lattice (extended=True)

Lambda = WL.fundamental_weights ()

alpha WL.alpha ()

delta WL.null_root ()

W = WL.weyl_group (prefix="s")

(s0,s1) = W.simple_reflections()

ws = [S1%s0xsl%*s0%sl,s0%slxs0xsl,slxs0%sl,s0+xsl,sl,
W.one(),s0,s1xs0,s0%s1xs0,s51*s0%xs1%s0,s0%s1lxs0%xs1%s0]
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The orbit of A

sage: for w in ws:
el print ("%s : %$s"%(w,Lambdal[0] .weyl_action(w)))

s1lxs0xslxs0Oxsl : S5xLambda[0] - 4xLambda[l] - 4xdelta

sOxslxsOxsl : —-3+«Lambda[0] + 4xLambda[l] - 4xdelta
slxs0xsl : 3xLambda[0] - 2+Lambda[l] - delta
sOxsl : —-Lambda[0] + 2+Lambda[l] - delta

sl : Lambda[0]
1 : Lambda[0]

sO : —-Lambda[0] + 2+Lambda[l] - delta
slxs0 : 3+xLambda[0] - 2+Lambda[l] - delta
sO0xslxs0 : —-3xLambda[0] + 4*Lambdal[l] - 4xdelta

s1lxs0xslxs0 : S5xLambda[0] - 4xLambda[l] - 4xdelta
sOxslxs0OxslxsO0 : —-5+«Lambda[0] + 6*xLambda[l] - 9xdelta
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The stabilizer

In the previous slide we considered the dominant weight A of
level 1 and calculated its Weyl group orbit. We note that every
value appears twice in that table. This is because A has a
nontrivial stabilizer, which happens to be the subgroup

W = (s1).

The affine Weyl group is the semidirect product of W and the
infinite cyclic group (s1so). So let us repeat the calculation with
this in mind.



Calculating the orbit

sage: t = slx*s0
sage: for k in [-
..... print (
t~-4 —7+Lambda [
t~-3 —-5xLambda [
th-2 —-3*Lambda [
tr-1 —Lambda [0]
t~0 Lambda [0]
t~1 3*xLambda[0]
tn2 5xLambda[0]
t~3 7+Lambda[0]
]

: 9%Lambda [0
sage: alphall]
—2xLambda [0]

So with r = 5159,

t
]
]
]
"

*(Ao)

+ 2*xLambdall]
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.47
%s : %$s"% (k,Lambda[0] .weyl_action(t"k)))
+ 8*«Lambda[l] - 1l6*delta
+ 6xLambda[l] - 9xdelta
+ 4xLambda[l] - 4xdelta
2+Lambda[l] - delta
2+Lambda[l] - delta
4xLambda[l] - 4xdelta
6xLambda[l] - 9*delta
8xLambda[l] - l6xdelta
= Ap — kay — k6.
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The orbit of A, in h*

l‘k(/\o) = No+ ko — k%6 L

—L(A tA
t = 5150 4 (.0) o

172(/\0) 12/\0
[ ] [ ]

3(Ao) 134\0
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The level k action

We defined an affine Weyl group in Lecture 3 acting on h*. This
group is generated by so, s1, - - , s, where sy, --- , s, are the
simple reflections in the finite Weyl group (acting on h*) and s
is the reflection in the hyperplane

x](8Y,x) =1J.
We will call this the classical level 1 affine Weyl group.

We could equally well consider the group generated by
s1,- -+ s and the reflection in the hyperplane

{x| <G\/,x> = k}.

The action would be similar but the fundamental alcove would
be larger, and contain more roots.
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The relationship between the two affine Weyl groups

The affine Weyl group acts on h*. This vector space is two
dimensions bigger than b*, but we will cut it down in two ways.

Since the affine Weyl group fixes &, there is an induced action
on h*/Cs.

Moreover we may fix the level k and consider the action on the
level k (affine) subspace of h*/Cb.

The action of W,g on the level k subspace of h*/C§ is
equivalent to the classical level k action. The equivalence is the
map

A= A+kAy modC5s .
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If1 <i<r, then
si(Ao) = Ao — (og”, Ao)o = Ao,
because (', Ag) = 0. So this map is equivariant for s; if i # 0.
We must check equivariance for sy. Indeed
so(A + kAg) = A+ kAo — (o, A+ kAg) oo =

A+kAg— ((0Y,A) +k)(5—0).

We may discard the & since we are quotienting by C6. Thus

so(A+kAg) = rg(A) + kO + kAy.
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