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The triangular decomposition

Let us consider a semisimple complex Lie algebra g, for
example sln(C). This has a triangular decomposition

g = n− ⊕ h⊕ n+,

where h is a Cartan subalgebra, and n+, n− are the spans of
the positive and negative root spaces in g. If g = sln then h is
the diagonal subalgebra and n+, n− are the upper and lower
triangular nilpotent subalgebras. We have two Lie subalgebras

b+ = h⊕ n+, b− = h⊕ n−.

There are similar triangular decompositions in other Lie
algebras, particularly the Kac-Moody Lie algebras, so today we
will look at the triangular decomposition more generally.
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The meaning of the triangular decomposition

Still in the case of a semisimple Lie algebra, assume that g is
the Lie algebra of the complex analytic Lie group G. Then n±,
h, b± are Lie algebras of Lie subgroups. For example if
G = SL(2,C)

N+ =

{(
1 x

1

)}
, N− =

{(
1
x 1

)}
, T =

{(
t

t−1

)}
,

B+ =

{(
t x

t−1

)}
, B− =

{(
t x

t−1

)}
.

The Bruhat decomposition asserts G =
⋃

B−wB+ where w runs
over the Weyl group. The big cell B−B = N−TN+ is open and
n− ⊕ h⊕ n+ is its tangent space, so this must be all of g.
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General triangular decompositions

We see that the triangular decomposition is a local substitute
for the Bruhat decomposition.

In Kac-Moody theory, it is possible to work with a group, but it is
also feasible and often preferrable to work directly with the Lie
algebra.

The triangular decomposition is central in Lie theory. It divides
the roots into positive and negative roots, thereby imposing a
length function on the Weyl group.

Triangular decompositions occur for many other Lie algebras
such as the Heisenberg Lie algebra that plays an important role
in the theory. Today we will proceed axiomatically.
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Representations of Lie algebras

If g is a complex Lie algebra, a representation on a (possibly
infinite-dimensional) vector space V is a linear map
π : g→ End(V) such that

π([x, y]) = π(x)π(y) − π(y)π(x).

We also write x · v = π(x) v. We refer to V as a g-module.

A particular example is the adjoint representation. For this,
V = g and define

ad(x)y = [x, y].

Then ad : g→ End(g) is a representation, as follows from the
Jacobi identity.
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The Cartan subalgebra

Therefore let g be a complex Lie algebra, possibly
infinite-dimensional. Let h be an abelian subalgebra of g. This
means that [x, y] = 0 for x, y ∈ h.

We assume that h is finite-dimensional.
We assume that h is maximal abelian.

This means that:

If X ∈ g such that [H,X] = 0 for all H ∈ h then X ∈ h.

Otherwise h⊕ CH would be a strictly larger abelian subalgebra,
contradicting maximality of h. Also assume

ad(h) acts diagonally on g.

Without this assumption, C ·
(

0 1
0 0

)
would be a maximal abelian

subalgebra of sl(2,C). We’ll elaborate later.
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Weight space decomposition

Let π : g→ End(V) be a representation. We will often write X · v
instead of π(X)v and refer to V as a g-module. Let λ be an
element of the dual space h∗. Let

Vλ = {v ∈ V |π(H)v = λ(H)v for all H ∈ h} .

We call Vλ the weight space of λ.

We are only interested in representations of g for which the
abelian Lie algebra h can be diagonalized. Thus assume that

V =
⊕
λ∈h∗

Vλ.

If this is true, we say that V has a weight space decomposition
with respect to the abelian subalgebra h.
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Kac’s Lemma on weight space decompositions

Lemma (Kac)
Suppose that V is a g-module that has a weight space
decomposition with respect to h. Then so does any submodule
of V.

Proof. Suppose that U is a submodule. We show

U =
⊕
λ∈h∗

Uλ,

where Uλ = U ∩ Vλ. Let u ∈ U. Write u =
∑

vλj as a finite sum
of elements vλi of weight spaces Vλ1 , · · · ,Vλm . Since the linear
functionals λj ∈ h∗ are distinct, find H ∈ h such that the values
λj(H) are all distinct.
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Proof, continued

Then note that
m∑

j=1

λj(H)ivj = Hiu ∈ U

for all i, in particular i = 0, · · · ,m − 1. The matrix (λj(H)i) with
1 6 j 6 m and 0 6 i 6 m − 1 is invertible since its determinant is
a Vandermonde determinant and the λj(H) are distinct. So
vj ∈ U proving u ∈

⊕
Uλ.
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Roots

Note that g is itself a g-module under the adjoint representation.

We will assume that g itself has a weight space
decomposition.

Thus

g =
⊕
α∈h∗

gα, gα = {X ∈ g|[H,X] = α(H) for H ∈ h}.

Because h is maximal abelian, g0 = h. Nonzero elements
α ∈ h∗ such that gα 6= 0 are called roots.

We will assume that the set Φ of roots is a discrete subset
of h∗ that spans a lattice Q, called the root lattice.
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Root operators shift root spaces

Lemma
Suppose that (π,V) is a representation of V and that X ∈ gα.
Then X · Vµ ⊆ Vα+µ.

Indeed, let v ∈ Vµ and H ∈ h. We need to show that Xv ∈ Vα+µ,
that is,

H(Xv) = (α+ µ)(H)Xv.

We have
HXv − XHv = [H,X]v.

Now XHv = X µ(H)v = µ(H)Xv since v ∈ Vµ. Also

[H,X] = ad(H)X = α(H)X

since X ∈ gα. Thus

HXv = XHv + [H,X]v = (α+ µ)(H)Xv.
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Closed sets of roots and Lie subalgebras

As a special case
[gα, gµ] ⊆ gα+µ.

In particular if α+ µ /∈ Φ ∪ {0} then [gα, gµ] = 0.
Let S be a subset of Φ ∪ {0} such that if α,β ∈ S and
α+β ∈ Φ∪ {0} then α+β ∈ S. We will express this assumption
by saying that S is closed (or convex).

Lemma
If S is a closed subset of Φ ∪ {0} then⊕

α∈S

gα

is a Lie subalgebra of g.

This follows from [gα, gµ] ⊆ gα+µ.
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The triangular decomposition

Let us find a hyperplane H ⊆ h∗ that does not intersect the root
lattice Q except at the origin. The roots on one side of H will be
designated as positive, the roots on the other side will be
designated as negative. Let Φ+ and Φ− be the sets of positive
and negative roots. These are obviously closed subsets of Φ so

n+ =
⊕
α∈Φ+

gα, n− =
⊕
α∈Φ−

gα

are Lie subalgebras of g. They are normalized by h and so

b+ = h⊕ n+, b− = h⊕ n−

are also subalgebras. By the weight space decomposition of g

g = n− ⊕ h⊕ n+ .
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The universal enveloping algebra

If A is an associative algebra, then Lie(A) is the Lie algebra that
is equal to A as a set with bracket [x, y] = xy − yx.

If g is a Lie algebra, the universal enveloping algebra U(g) is
the quotient of the tensor algebra g by the two-sided ideal
generated by elements of the form x⊗ y − y⊗ x − [x, y]. It is an
associative algebra with a Lie algebra homomorphism
j : g→ Lie(U(g)). This means j(x)j(y) − j(y)j(x) = j([x, y]).

Proposition (Universal property of U(g))

If A is an associative algebra and f : g −→ Lie(A) is a Lie
algebra homomorphism, then there is a unique algebra
homomorphism F : U(g) −→ A such that f = F ◦ j.
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Poincaré-Birkhoff Witt (I)

If V is a g-module then the universal property applied with
A = End(V) gives an algebra homomorphism U(g) −→ End(V),
so V becomes a U(g)-module homomorphism.

The Poincaré-Birkhoff-Witt theorem (PBW) is a fundamental
fact about Lie algebras, describing a basis of the universal
enveloping algebra. Let Xi (i ∈ I) be an ordered basis of a Lie
algebra g. We call an element of the universal enveloping
algebra U(g) a standard monomial if it is of the form

Xi1 · · ·Xik , i1 6 i2 6 · · · 6 ik.

We did not assume that g is finite-dimensional. If it is we may
identify I = {1, · · · , n}, in which case we could equivalently say
that a standard monomial is an element of the form

Xm1
1 · · ·X

mn
n , mi > 0.
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PBW (continued)

Theorem (PBW)
The standard monomials are a basis of U(g).

A proof may be found at Paul Garrett’s web page (web link):

http://www-users.math.umn.edu/∼garrett/m/algebra/pbw.pdf

Or see Humphrey’s book Introduction to Lie Algebras and
Representation Theory, available on-line through the Stanford
Libraries for proof and discussion of PBW.

It is quite easy to prove that the standard monomials span U(g),
but nontrivial to show that they are linearly independent. This
implies that the map j : g −→ U(g) is injective.

http://www-users.math.umn.edu/~garrett/m/algebra/pbw.pdf
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Triangular decomposition of U(g)

Returning to the case where g has a triangular decomposition:

g = n− ⊕ h⊕ n+

Choose the basis in the PBW theorem so that I = I− ∪ I0 ∪ I+
where Xi with i ∈ I−, I0, I+ respectively are bases of n−, h and
n+ respectively. Order I so I− < I0 < I+.

Then PBW implies that

U(g) ∼= U(n−)⊗ U(h)⊗ U(n+).

Indeed with these preparations every standard monomial in
U(g) is a tensor product of standard monomials in U(n−), U(h)
and U(n+) showing that the multiplication map
U(n−)⊗U(h)⊗U(n+) −→ U(g) is a vector space isomorphism.
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Highest weight modules

Let λ ∈ h∗. Regard this as a character of the abelian Lie
algebra h. Extend it to a character of b = b+ = h⊕ n+ by letting
n+ act by zero.

Thus we have a homomorphism φλ : b −→ C such that
φλ(H) = λ(H) for H ∈ h and φλ(X) = 0 for X ∈ n+. This is a
homomorphism (where C is an abelian Lie algebra) since
φλ([x, y]) = 0 for all x, y ∈ b. This is because [x, y] ∈ n+.

Definition
A module V with a weight space decomposition is called a
highest weight module for λ if Vλ = Cvλ is one-dimensional
spanned by a vector vλ such that H · vλ = λ(h)vλ for H ∈ h,
X · vλ = 0 for X ∈ n+, and V = g · vλ.
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The finite-dimensional case

For example, if g is a finite-dimensional semisimple Lie algebra,
then any irreducible module is a highest-weight module for a
unique highest weight λ ∈ h∗. The λ that occur as highest
weights are precisely the dominant weights.

On the other hand, we will see soon that there are other highest
weight modules form g that are infinite-dimensional. The
finite-dimensional modules are special since they are integrable
meaning (roughly) that they lift to representations of the Lie
group G. We say “roughly” since integrability can be defined
without introducing the Lie group.
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Universal highest weight modules

We return to the general case.

Proposition
Let V and U be highest weight modules for the same highest
weight λ. Then Homg(V,U) is either zero or one-dimensional.

Proof. Since g · vλ = V, if T ∈ Homg(V,U) annihilates vλ it is
zero. But φ(vλ) ∈ Uλ which is one-dimensional, so T(vλ) must
be a constant multiple of uλ, and after adjusting by a constant
we may assume T(vλ) = uλ. But now φ is determined since vλ
generates V.

We will say that a highest weight module universal if
Homg(V,U) is one-dimensional for all V.
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Universal highest weight modules (continued)

Theorem
Let g be a Lie algebra with a triangular decomposition, and let
λ ∈ h∗. There is a universal highest weight module M(λ) for λ.
It is unique up to isomorphism. The map ξ 7−→ ξ · vλ (where vλ
is the highest weight vector) is a vector space isomorphism
U(n−) −→ M(λ).

The universal highest weight module M(λ) is called the Verma
module for λ.

Proof. Uniqueness follows from the fact that the definition of a
universal highest weight module amounts to a universal
property. The universal highest weight module is an initial
object in the category of highest weight modules for λ.
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Proof (continued): Constructing the Verma module

To prove existence, we give a construction, called the Verma
module construction. Denote by Cλ the b-module C with the
corresponding b-module structure; that is, x · a = φλ(x)a for
x ∈ b and a ∈ C. This becomes a module for U(b).

Now M(λ) is the g-module induced from the b-module C. This
can be defined as U(g)/Jλ where Jλ is the left ideal generated
by elements of the form b − φλ(b) with b ∈ U(b). Let vλ be the
coset 1 + Jλ which is obviously a highest weight vector for λ.
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Proof (continued): the universal property

We show that M(λ) is a universal highest weight module. Let U
be a highest weight module with highest weight vector uλ.
Consider the map U(g) −→ U that sends ξ ∈ U(g) to ξ · uλ. By
construction Jλ · uλ = 0 so this map factors through
M(λ) = U(g)/Jλ. Hence M(λ) is a universal highest weight
module.

Finally note that

M(λ) = U(g)vλ = U(n−)U(b)vλ = U(n−)vλ

so the map ξ 7−→ ξ · vλ is surjective U(n−) −→ M(λ). Moreover
it is it is not hard to deduce from the PBW theorem that
U(n−) ∩ Jλ = 0 so this map is also injective.
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Maximal submodules

Lemma
Let V be a highest weight module. Then V has a unique
maximal proper submodule.

Proof. Since the highest weight vector vλ generates V, and
Vλ = Cvλ is one dimensional, it is clear that a submodule U is
proper if and only Uλ = 0. Now let K be the sum of all proper
submodules. Then Kλ =

∑
Uλ = 0 and so K is proper.

Obviously it is the unique maximal proper submodule.
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Irreducibles

Proposition
Let g be a Lie algebra with a triangular decomposition, and let
λ ∈ h∗. Then there is a unique highest weight module L(λ) for λ
that is irreducible. If V is a highest weight module for λ then
L(λ) is a quotient of V.

Proof. By the Lemma, M(λ) has a maximal proper submodule
K and since vλ /∈ K, the quotient L(λ) = M(λ)/K is a highest
weight module. It is irreducible by the maximality of K.

If V is another highest weight module for λ, it is a quotient of
M(λ). Writing V ∼= M(λ)/U for some proper submodule U,
K ⊇ U so L(λ) is also a quotient of V. Since L(λ) is a terminal
object in the category of highest weight modules for λ, it is
unique up to isomorphism.
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The finite-dimensional semisimple case

We specialize now to the case where g is a semisimple Lie
algebra. If λ ∈ h∗ is a dominant weight, then we know from the
Weyl theory that the irreducible highest weight module V = L(λ)
with highest weight λ is finite-dimensional. Its character

χλ =
∑
µ

dim(Vµ)eµ

is given by the Weyl character formula:

χλ =

[ ∏
α∈Φ+

(1 − e−α)−1

]∑
w∈W

(−1)`(w)ew(λ+ρ)−ρ.

Here W is the Weyl group, Φ is the root system and Φ+ is the
set of positive roots and ρ is the Weyl vector, half the sum of the
positive roots.
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The character of the Verma module

On the other hand, let us consider the character of M(λ). We
noted that the map ξ 7−→ ξ · vλ is a vector space isomorphism
U(n−) to M(λ).

Proposition
The character of M(λ) is

eλ
∏
α∈Φ+

(1 − e−α)−1.

Proof. We start with the fact that ξ 7→ ξ · vλ is a vector space
isomorphism U(n−)→ M(λ). Taking into account the fact that
the weight of vλ is λ,

M(λ) ∼= Cλ ⊗ U(n−)

as h-modules.
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Proof (continued)

The character of U(n−) may be computed using the PBW
theorem. The weights in n− are −α where α ∈ Φ+. Let
X−α ∈ n− be the corresponding generators, a basis of n−. By
PBW a basis of n− consists of

∏
α∈Φ+ Xkα

−α with kα ∈ N. This
vector has weight −

∑
kαα, so the character of U(n−) is

∏
α∈Φ+

∞∑
kα=0

e−kαα =
∏
α∈Φ+

(1 − e−α)−1.

Thus the character of M(λ) is

eλ
∏
α∈Φ+

(1 − e−α)−1.
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Comparison

We may now identify every term in the Weyl character formula:

χλ =

[ ∏
α∈Φ+

(1 − e−α)−1

]∑
w∈W

(−1)`(w)ew(λ+ρ)−ρ.

We see that

χL(λ) =
∑
w∈W

(−1)`(w)χM(w(λ+ρ)−ρ).

This identity is a reflection of an algebraic fact, the BGG
resolution of L(λ). We will not fully explain this now, but we will
look at this a little more closely in a special case.
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The case of sl(2,C)

Let us specialize to the case of sl(2,C). There is a unique
positive root α1 and if s1 is the corresponding simple reflection,

w(λ+ ρ) − ρ =

{
λ if w = 1W ,
s1(λ) − α1 if w = s1.

Thus
χL(λ) = χM(λ) − χM(s1λ−α1).

We know from our previous results that there is a surjective
homomorphism M(λ) −→ L(λ). This shows that the character
of the kernel is M(s1λ− α1), and indeed, there is a short exact
sequence

0 −→ M(s1λ− α1) −→ M(λ) −→ L(λ) −→ 0.
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sl(2,C), continued

Let us visualize the character of the Verma module M(λ) as
follows. Note that λ ∈ h∗ can be arbitrary. The weights are

λ, λ− α1, λ− 2α1, · · · .

If vµ is the basis vector spanning M(λ)µ visualize:

vλvλ − α1vλ − 2α1
· · ·

The Verma module M(λ) and its maximal irreducible quotient
L(λ) are both defined for all λ ∈ h∗. Unless λ is a dominant
weight, M(λ) is irreducible, so for λ in general position
L(λ) = M(λ).
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The root operators shift between the root spaces

We may visualize the effects of E and F thus. The weight space
Cvµ is the same as the H-eigenspace for eigenvalue µ(H). And

F(vµ) = (∗)vµ−α1 , E(vµ) = (∗)vµ+α1

where (∗) are constants, usually nonzero:

· · · vλ−2α vλ−α vλ
E

F

E

F

E

F
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The finite-dimensional quotient

The dominant weights are k
2 α1 with k = 0, 1, 2, · · · . If λ = k

2α1 is
a dominant weight, then k = 〈α∨

1 , λ〉 is a nonnegative integer.
Then we may calculate

E1(vλ−(k+1)α1) = 0

and vλ−(k+1)α1 generates a proper submodule K and the
irreducible quotient L(λ) = M(λ)/Q is finite (k + 1-dimensional).

vλvλ − α1vλ − 2α1

· · ·

White: the submodule K. Dashed arrow is zero.
Black: the finite dimensional quotient L(λ).
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BGG resolutions

Now let g be a general semisimple complex Lie algebra. Since

χL(λ) =
∑
w∈W

(−1)`(w)χM(w(λ+ρ)−ρ)

we may hope for a resolution of L(λ) in terms of Verma
modules. Such a resolution is called a BGG resolution.
Specifically, Bernstein, Gelfand and Gelfand proved that if N is
the number of positive roots of g, which also equals the length
of the long Weyl group element there is an exact sequence

0 −→ CN −→ CN−1 −→ . . . −→ C0 = M(λ) −→ L(λ) −→ 0

with
Ck =

⊕
w∈W
`(w)=k

M(w(λ+ ρ) − ρ).
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References for the BGG resolution

Web link to Bernstein, Gelfand and Gelfand, Differential
operators on the affine space base space and a study of
g-modules at Joseph Bernstein’s web page:

(Web link to BGG paper)

See Theorem 10.1.

A good reference for the BGG resolution (following arguments
of Rocha) is Humphreys, Representations of Semisimple Lie
algebras in the BGG Category O, Chapter 6.

http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-differ-operators.pdf
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Weights and dominant weights

The finite-dimensional semisimple Lie algebra g is the Lie
algebra of a complex analytic Lie group G, which we assume to
be simply-connected. If L(λ) is finite-dimensional, then it may
be “integrated” to obtain a representation of G. Hence we call
these definitions integrable though when we discuss the
Kac-Moody theory we will want a notion of integrability that
does not require us to construct the group G.

Let
P =
{

x ∈ h∗|〈α∨
i , x〉 ∈ Z for all i

}
,

P+ =
{

x ∈ P|〈α∨
i , x〉 > 0 for all i

}
.

Elements of the weight lattice P are called integral weights.
Elements of P+ are called dominant weights. The weight lattice
P contains the root lattice Q.
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Class functions on G

Let T be the maximal torus of G whose Lie algebra is h.
Assuming that G is simply connected, it P may be identified with
the group X∗(T) of rational characters of G (Bump, Lie groups,
2nd ed., Proposition 23.12). So if z ∈ T and µ ∈ P we will write
zµ for the value of µ at z ∈ T.

Let f be a continuous class function f on G. The conjugates of
T are dense in G, so it is enough to describe f (z) for z ∈ T. We
may expand

f (z) =
∑
µ∈P

aµzµ

Let W be the Weyl group N(T)/T. If z, z ′ ∈ T they are conjugate
in G if and only if they are equivalent under W. So a necessary
and sufficient condition for this function on T to be a class
function is that aw(µ) = aµ for w ∈ W, µ ∈ P.
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If a representation π of g can be integrated to a representation
of G then the character

χπ =
∑
µ

dim(Vµ)eµ

which is a priori just a formal sum, can be interpreted as the
function

χπ(z) =
∑
µ

dim(Vµ)zµ

of z ∈ T. And from the above discussion, the weight
multiplicities dim(Vµ) must be invariant under W.

Considering the application of this to L(λ) and M(λ) if λ ∈ P+

then L(λ) is finite-dimensional, so naturally the weight
multiplicities are W-invariant. But the weight multiplicities of
M(λ) are never Weyl invariant, so M(λ) can never be lifted to G.
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The Weyl group action

The Weyl group W can be described without reference to G. Let
αi ∈ h∗ be the simple roots, and α∨

i ∈ h the corresponding
simple coroots. These are vectors such that the generating
simple reflections si ∈ W have the defining relation

si(x) = x − 〈α∨
i , x〉αi, x ∈ h∗.

Since we want si(αi) = −αi this means that 〈α∨
i ,αi〉 = 2.
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The Cartan matrix

The adjoint action of W on h is similarly described:

si(x) = x − 〈x,αi〉α∨
i .

The matrix A = (aij) where aij = 〈α∨
i ,αj〉 is called the Cartan

matrix of g. As we will see in the next lecture, one many start
with the Cartan matrix and reconstruct the Lie algebra.
Following Kac, this procedure is very general and produces
infinite-dimensional Lie algebras with much of the theory for
finite-dimensional Lie algebras going through.
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