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The plan of this course

This course will cover the representation theory of a class of Lie
algebras called affine Lie algebras. But they are a special case
of a more general class of infinite-dimensional Lie algebras
called Kac-Moody Lie algebras. Both classes were discovered
in the 1970’s, independently by Victor Kac and Robert Moody.
Kac at least was motivated by mathematical physics. Most of
the material we will cover is in Kac’ book Infinite-dimensional
Lie algebras which you should be able to access on-line
through the Stanford libraries.

In this class we will develop general Kac-Moody theory before
specializing to the affine case. Our goal in this first part will be
Kac’ generalization of the Weyl character formula to certain
infinite-dimensional representations of infinite-dimensional Lie
algebras.
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Affine Lie algebras and modular forms

The Kac-Moody theory includes finite-dimensional simple Lie
algebras, and many infinite-dimensional classes. The best
understood Kac-Moody Lie algebras are the affine Lie algebras
and after we have developed the Kac-Moody theory in general
we will specialize to the affine case.

We will see that the characters of affine Lie algebras are
modular forms. We will not reach this topic until later in the
course so in today’s introductory lecture we will talk a little
about modular forms, without giving complete proofs, to show
where we are headed.



Modular Forms
00@0000000000000000000000000000

The upper half plane

The simplest modular forms are modular forms for SL(2, Z),
and we start with those. The group SL(2,R) acts on the
Poincaré upper half plane

H ={t € Clim(t) > 0}
by linear fractional transformations:
a b\ SN at+b
c d )’ ct+d

The discrete subgroup SL(2,7Z) then acts discontinuously.
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The fundamental domain

A fundamental domain consists of

1 1
F={t=x+iy] —§<x<§,|1|:\/x2+y22 1},

The subgroup {—I} acts trivially. The SL(2,Z) translates of this
domain tile K.

£27i/3
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Sand T

Two useful generators of SL(2,7Z) are

11 0 —1
They satisfy the relations

S =—1, (ST’ =1L

They have the effect:

T:t—1+1, S:TI—>—;.
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The fundamental domain

Here is the fundamental domain  with the two translates 7F
and S7.

2mi/3 v/\ ( —1)
S= |

@ SL(2,7Z), notes by Keith Conrad



https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf
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Cusps

We may extend the action of SL(2,Z) to H UR U {co}, where the
action is by linear fractional transformations, and we define
aTth — o if ct+d =0, and L+ = ¢ if 1 = co. We think of

R U{oo} as the projective line P!(R).

Alternatively (and better) we can just add P'(Q) = Q U {co} and
consider SL(2,Z)\(H UP'(Q)). There is just one orbit of
SL(2,7) on P(Q) but for subgroups such as

Mo(N) = {( “ Z ) € SL(2.Z)lc = 0 mod N}

there may be several. These orbits are called cusps.
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Modular curves

Shimura showed that adjoining the cusps to the quotient
T'o(N)\H produces an algebraic curve that can naturally be
defined over Q. This is the modular curve Xy(N).

One may also consider quotients
X(N) =T(N)\HU{cusps}, I'N) ={y € SL(2,Z)|y = I mod N}.

For these the field of definition is Q(e?™/V) in Shimura’s theory
of canonical models.

The following web link discusses the field of definition of Xy(N):

@ Modular Functions and Modular Forms by James Milne


https://www.jmilne.org/math/CourseNotes/MF.pdf
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Example: X,(11)

Here is a fundamental domain for Iy(11):

Pol—
|
(=}
wl—
ol—

The cusps +1, +1,0 are actually I;(11) equivalent, so this
group has only two cusps, {0, co}. As an algebraic curve, Xy(11)
has the equation y> +y = x> — x> — 10x — 20.

@ Notes on Xy(11) by Tom Weston


http://swc.math.arizona.edu/aws/2001/01Weston1.pdf
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Elliptic modular forms

Now we may introduce modular forms. They may be thought of
as sections of line bundles over the modular curve.

The simplest type of modular forms we will call elliptic modular
forms of level 1 and weight k. These are holomorphic functions
of T € H that satisfy

at+b\ k a b
f<CT+d>—(CT+d)f(T), (c d)ESL(Z,Z).

Here k is an even positive integer called the weight.

There is another condition that we want to impose...
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Holomorphy at the cusp

Since T is the transformation T — T+ 1 any modular form
satisfies f(t+ 1) = f(t). Hence it is well defined as a function of
g = ™7 and has a Laurent expansion

flr) = Z anq".

nez

We require a, = 0 if n < 0. This expression is called the
g-expansion (or Fourier expansion at co).

We express the requirement that a, < 0 for n < 0 by saying that
f is holomorphic at the cusp at co. We could relax the condition
by only requiring a,, = 0 for n sufficiently negative, and then we
would say that f is meromorphic at oco.
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Modular forms and cusp forms

If ay = 0 we say that f vanishes at the cusp at co or that f is a
cusp form.

The spaces of modular forms of weight k and cusp forms are
respectively denoted

Mi(SL(2,Z)),  Sk(SL(2,Z)).

These definitions can be extended to IH(N) noting:
@ One must formulate the notions of holomorphy and
vanishing at cusps # oo;
@ For IH(N) it is possible to include a Dirichlet character x
mod N (“Nebentypus”) in the definition.

(ZE) —xmier v, (44) enw.

ct+d
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Forms with odd weight

Modular forms (resp. cusp forms) of level N and weight & with
Nebentypus character x for I)(N) are denoted:

M (To(N), ), Sk(To(N),x).

From the definition:

at+b a b
(S xersatr. (4 ) e

If x(—1) = 1 then k must be even, but if x(—1) = —1 then k must
be odd for consistency.
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Eisenstein series and Ramanujan’s A

The simplest elliptic modular forms of level 1 are Eisenstein
series: .
GilT) = 5 > ettt

(c,d)€Z?
ged (e, d)=1

Elliptic modular forms of level 1 form a ring, and G4, G¢ are
generators. A cusp form of weight 12:
1
AlD = 1728
This is Ramanujan’s discriminant function, a very famous and
important modular form. It has a remarkable product
expansion.

——(G; — Gp).

(0¢] (0.¢]

Alt) = C]HU — g = ZT(n)q”, g =T

n=1 n=1
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The L-function of A

The infinite product expansion shows that A is nonvanishing on
H but has a zero of order 1 at the cusp. Ramanujan made two
famous conjectures (1916). The first conjecture was the Euler
product

(e¢]

Lis,A) =) t(mn =] J(1—x(p)p +p">)"".

n=1 p

This may be complemented by the functional equation

Als, A) == (271) *T(s)L(s, A) = A(12 — 5, A).
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Euler products with functional equations

Compare the Euler product and functional equation for L(s, A)
to the Riemann zeta function, which also has an Euler product
and a functional equation:

C*(s) = /2T (%) o(s) = C(1—s)

we see that ((s) and L(s, A) are both objects of the same
general type, and from today’s perspective, they are
automorphic forms on GL(n) for n = 1, 2 respectively.
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Glimpses of the bigger picture

Ramanujan’s conjectured Euler product was proved by Mordell
(1917). A second conjecture, that t(p) < 2p'!'/2 for p prime, was
not proved until 1970 by Deligne, and is a manifestation of deep
connections between the theory of modular forms and
algebraic geometry.

The Ramanujan-Mordell Euler product was generalized by
Hecke (1937) to other modular forms. This Hecke theory
extends to automorphic forms on GL(r), and is an important
connection between modular forms and representation theory.
It shows that one may associate with any automorphic form on
GL(n) an L-series that has an Euler product and functional
equation (and, we might add, an unproven Riemann
hypothesis).
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Hecke theory and Atkin-Lehner theory

Hecke (with a later important complement by Atkin and Lehner)
generalized Ramanujan’s Euler products and showed that

M (SL(2,7Z)) or M(To(N),x) has a basis of modular forms
whose L-functions have Euler products. Thus a Hecke

eigenform
[oe]
— Z anezm‘m
n=0
satisfies
Zan 2 =TT0—alplp +xpp* )
p

There are some subtleties concerning p|N and this is what was
clarified by Atkin and Lehner.
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Modular forms of weight 2

If ad — bc =1 then

dat+b 5
dtet+d = (et+d)

This implies that the holomorphic differential form
(ct+d) 2dr

is invariant under (¢5).

Thus if f is a modular form of weight 2 for I)(N) (Nebentypus

x = 1) then w = f(7) d7 is a holomorphic differential form on
T'o(N)\H. The condition for w to be holomorphic for the cusps is
that f is a cusp form. So modular forms of weight 2 are
precisely holomorphic differentials on Xy (N).
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Cusp forms of weight 2

Since the modular curve X,(N) is a smooth complex curve it
has a genus g, and the Riemann-Roch theorem implies that g is
the dimension of the space of holomorphic differentials.

Therefore
g =dim S (To(N)).

For example if N = 11 the genus g = 1 and it may be checked
that the unique cusp form of weight 2 is

qH(l . qn)Z(l . qlln)Z‘

n=1

The arithmetic theory (Eichler, Shimura) is simplest for cusp
forms of weight 2.
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The cusp form of weight 2 for I)(11)

Now consider the unique cusp for of weight 2 for I'H(11):

[e¢] [e¢]

g[ [0 —a(1—=¢")? =) a(n)

n=1 n=1

=qg-20 @ +2¢8"+ ¢ +2¢°—24"— ...

This, like Ramanujan’s modular form A of weight 12 is a “Hecke
eigenform” which implies that the L-series made with the same
coefficients has an Euler product:

[e¢]

S aln) = T](1 —alp)p~ +p' )",

n=1 p

We will relate the coefficients a(p) to a diophantine problem.
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Eichler-Shimura Theory

We saw that an equation for X, (11) is
y2 +y =x> —x* — 10x — 20.

Let |[E(F,)| be the number of solutions to this equation over the
finite field IF,,, plus one for the point at infinity on the curve.

Remarkably, Eichler-Shimura theory shows

#E(F,) =1 —a(p) +p.

Here is some data:

) 2 [3 [5]7 [13[17 [19[23 [29
#EF,) |5 |5 |5/10 [10]20 [20]25 |30
alp) 2| =1 [1[=2]4 [=2]0 [=1]0
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The modularity theorem

The last slide depended on the fact that the elliptic curve
¥ +y=x"—x*—10x—20

is the modular curve Xy(11). It is too much to expect that every
elliptic curve E defined over Q can be realized thus as a
modular curve Xy(N). But remarkably, every elliptic curve E/Q
admits a morphism X,(N) — E. The genus of Xy(N) might be
> 1. This was roughly conjectured by Taniyama and Shimura
(1956). The conjecture was popularized when it was restated
by Weil (1967). In 1986 Ribet showed that the
Taniyama-Shimura conjecture implies Fermat’s Last Theorem.
The Taniyama-Shimura modularity conjecture was proved by
Wiles and Taylor, and Breuil, Conrad, Diamond and Taylor.
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Modular forms of half-integral weight

Modular forms of level k = 1,2,3,--- are automorphic forms on
GL(2) and fit into the Langlands program.

However we will often be concerned with modular forms that
are not automorphic forms on GL(n) in this sense. We may
consider automorphic forms of half-integral weight. For these
the Hecke theory is more subtle and was not understood until
Shimura (1973) and Waldspurger (1980).

In the adele language, modular forms of integral weight may be
associated with functions on GL(2, A) where A is the adele ring
of Q. Modular forms of half integral weight live not on GL(2, A)
but on a double cover (central extension) (/}VL(Z, A) called the
metaplectic group.
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The Dedekind eta function

An example of a modular form of half-integral weight may be
obtained by taking A and raising it to the 1/24 power. In view of
the formula

(.¢]

Al =q] J(1—gm*

n=1

the function A never vanishes on H and we may consider
nn =¢"*]1J(1—q"
n=1

where ¢!/24 = (27T/24,
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The Dedekind eta function as a modular form

Note that 1 is a modular form of weight 1/2 for SL(2,Z) because

a’t—l—b — (% 1/2 a b
n(cHd)—()(mw) n(o), <C d)

where (x) is a 24-th root of unity. This is the eta function of
Dedekind (1877). Without the ¢'/?*, this goes back to Euler and
the theory of partitions.
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The Jacobi-Riemann theta function

For another automorphic form of half integral weight consider

o0
:Zq”2:l+2q+2q4+2q9+---

—0o0

introduced by Jacobi. This plays a role in Riemann’s second
proof of the functional equation of ((s).

This is a modular form of half-integral weight for Iy (4), with a
slightly complicated multiplier system.

+b _
e(j:+d) (ct+d)"/ %y ‘(g)em, (25) € Ty(4),

where y(d) = 1 or i according as d = 1,3 mod 4 for an
appropriate branch of the square root, and ( ) is Shimura’s
version of the quadratic residue symbol.
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Poisson summation

To prove an automorphicity for © one may use the Poisson
summation formula. A function f on R is Schwartz class if it is
smooth and f and all of its derivatives are of facter than
polynomial decay. We may define the Fourier transform

flx) = J ()™ dy

which is also Schwartz.

Proposition (Poisson summation)

Letf be a Schwartz function on R. Then

S fm=Y .

n=—oo n=—oo
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Proof of Poisson summation

To prove the Poisson summation formula define

F)= Y fle+n),

n——0oo

This is smooth and periodic hence has a Fourier expansion

(0]
F(x) = Z a, et

n——oo

where

1
a, = J F(x)e 2™ dx.
0
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Proof of Poisson summation (continued)

Substituting the definition F(x) =Y ° _ f(x+n) and
telescoping the sum

a, = Jio F(x)e gy = f(—n).

Now substituting x =0 in

Z aneZm'nx _ F(X) _ Z J}(_n)eZm'nx

n=—00 n=—oo

gives the Poisson summation formula.
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Applying the Poisson summation formula to f(x) = 2™,

P g ey e
f(x) - \/Ti’fe
we obtain | |
0(t) = ——0 | —— .
(0 Vv =2it ( 4T>

This gives a transformation property with respect to

Note that S’ is not in Iy(4) but it normalizes it. It may be seen
that Iy(4) is generated by 7= (' 1), — and S'T(S’) ! so the
modularity of 6 may be deduced.
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Elliptic functions

The early history of modular forms was intimately tied up with
the theory of elliptic functions. If T € H we may consider
meromorphic functions of z € C that are doubly periodic:

flz+ct+d) =f(2).

These are elliptic functions. The quotient C/A where A is the
lattice generated by 1, T can be identified with an elliptic curve E
over the complex numbers, and elliptic functions are just
meromorphic functions on E.
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Theta functions

We cannot require elliptic functions to be holomorphic: they
always have poles unless they are constant. But it is possible to
replace the transformation invariance by something more
general and consider holomorphic functions 6 that satisfy a
quasiperiodicity such as

0(z 4+ u) = 0(z)2™ LW+ (W) u€ezlor,

where L is linear in z. By taking the ratio of two theta functions
with the same theta multiplier 2(L(z)+/ (1)) we obtain an
elliptic function.
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Jacobi’s theta functions

For example, consider the function

n? Zmnz __2mt
Z g g =,

Thus this theta function (from Jacobi’s 1829 treatis

Fundamenta Nova Theoria Functionum Ellipticarum) has
periodicity properties for both 1 and T and is a theta function.

This is a theta function whose periodicity properties with
respect to the periods 1 and Tt are 0(z + 1) = 6(z) and

Z+T T Z q qn 27ting _q71/4672ﬂize(z’,[)’

n——oo

which is easily proved by reindexing the summation and
completing the square.
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Double quasi-periodicity of 0

From these two periodicities we see that
0(z+n+mt, 1) = (%)0(z, T)

where the factor (x) is nonzero (hence of the form ¢27M(zn+mT))
and with u = n + mr fixed, M(z, u) is linear in z. Thus

0(z + u) = FmEETDH(W) uelZ+17Zr

satisfies the definition of a theta function.
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Modular transformation of 0

A deeper transformation property

0(z,T) = (—2iT)_1/2e_i“zz/2T9 <—Z,—1>

2T 4t
may be proved by the Poisson summation formula. Note that
0(0, T) is the function we called 0 earlier. From our previous
discussion, this transformation property implies that
0(t) = 0(0, t) is a modular form. Many other identities may be
deduced from this that have applications in the theory of
partitions going back to Euler.
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The Jacobi triple product identity

The Jacobi triple product identity is a famous infinite product for
0(z, 7). Let us write ¢*™ = —w for a parameter w. Then
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Partial proof

Many proofs of this may be given. It is easy to show that

00 00
( 2n 1 | 2n71)
T R

where the factor () is independent of w. Indeed, both sides
satisfy the same recursion

F(w,q) = —wqF(q*w,q)

from which it may be deduced that the quotient is independent
of w. But evaluating the ratio

2 _(—=w)"q"
H(l _ Wan—])(l _ w—lq2n—l)
as [](1 — ¢*") is harder.

2
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1 is a theta function

The Dedekind ) function is also a theta function. Let us relate it
to 0(z,T). We consider

3T\ _ = 3n—3/2 3n —1 3n—3/2
e(z,z)—}‘[l(l—wq )1 —g") (1 —w g™ ),
Choose z so that w = ¢'/2:

0(5.5) ~TIu-a" - -w'g" 2 =TT~

n=1 n=1
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1 as a theta function (condinued)

Now remembering the definition of 6:

o0 o0

T 31 2 2
_ _\n/2 3n7/2 __ _1\n,,(3n"+n)/2
(35 ) = Zlmard = 3 apgen

Multiply this by ¢'/?* to complete the square. Since
3 +n+ &5 =3 (n+ 1) we get

T 3T = n (6n+1)2
_q1/24H 1 q 1/246 (2 2) _ Z (_1) q(6 +1)°/24

n—=—oo
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Review of Lie theory

Let g be a finite-dimensional simple Lie algebra and h a Cartan
subalgebra. Then we may write

where for o € bh*
Xo ={X € gllH,X] = «(H)X for H € b}

and the root system @ is the set of nonzero « € h* such that
X« is nonzero. We may find a nondegenerate symmetric
bilinear form ( | ) on b that is invariant meaning that

(bx,yllz) = —(yllx, 2]).
Now we may define an isomorphism v : h — h* by
(v(H),H'") = (H|H'). By means of this isomorphism, we may
transfer (| ) to an inner product on h*.
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The Weyl group

We may find a vector p € h* called the Weyl vector such that if
®" ={x € ®|(pler) > 0}

then

=5 Y «

xed+

The set @ is called the set of positive roots.

If « € @ let ry : b* — b* be the reflection in the hyperplane
orthogonal to «. The group W generated by the r is called the
Weyl group. It has a character sgn : W — {£1} such that
sgn(ro) = —1.
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Comparison

If u € b* let e* be a formal symbol such that e*+» = ete?. The
Weyl denominator formula is the identity

H (1—e %) ngn P,

xedt wew

This is an adjunct to the Weyl character formula.

Now compare this to the Jacobi triple product identity:

o0 o0
2

[Ta—=gn0—zgn1=2""g") = Y (—1)"2"q".

n=1 n=—oo

Both identities equate a product with an alternating sum. In
both cases the sum is quite sparse, showing that the product
has many cancellations.
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Affine Lie algebras and modular forms

It turns out that the Weyl theory, including the Weyl character
formula and the Weyl denominator formula, generalize to the
class of Kac-Moody Lie algebras, which includes
infinite-dimensional Lie algebras with infinite root systems and
infinite Weyl groups. The simplest infinte-dimensional
Kac-Moody Lie algebra is the affine Lie algebra 37[(2). And the
Weyl denominator formula for 2[(2) is the Jacobi triple product
identity.

This is just the beginning. Motivated by examples in
mathematical physics, an extensive theory was developed by
Kac and Peterson (1984) showing how characters and “string
functions” of representations of affine Lie algebras are modular
forms.
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