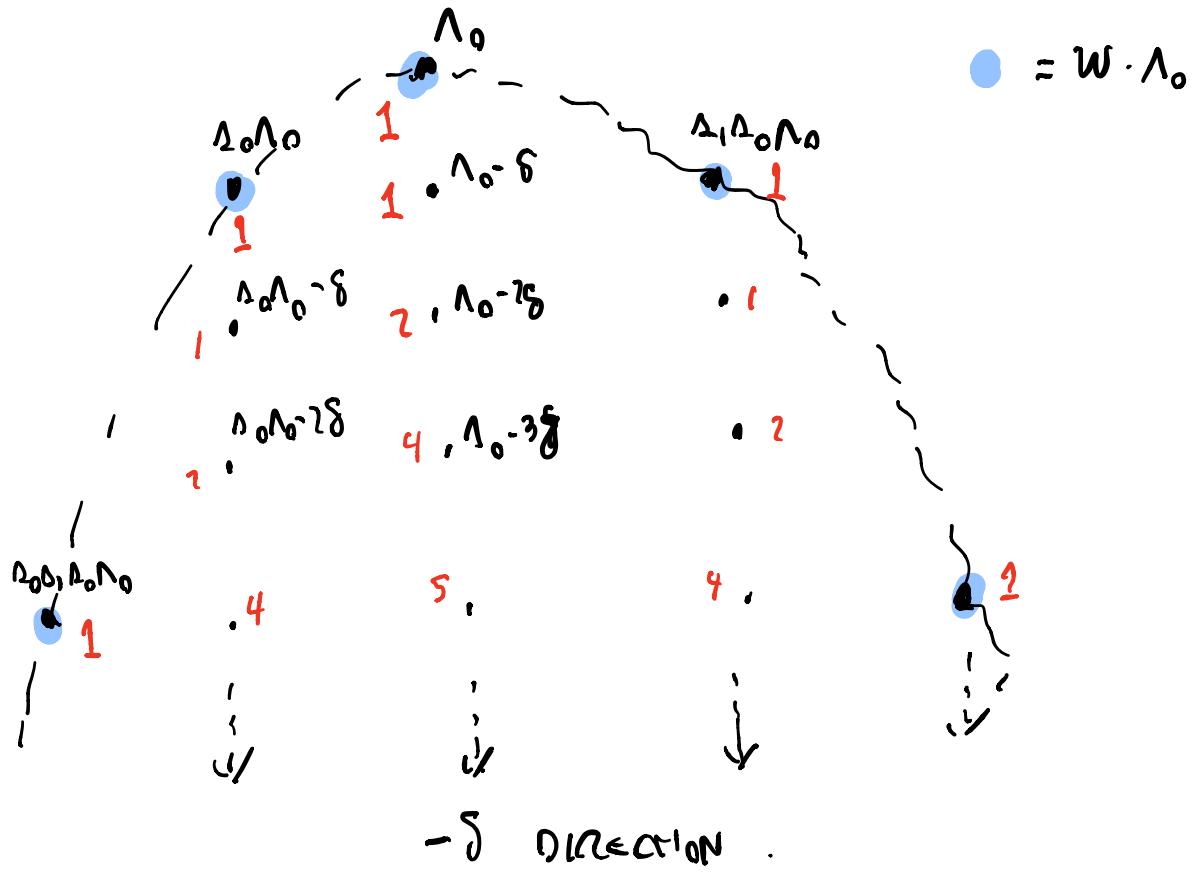


EXAMPLE FROM LAST THURSDAY

$\mathfrak{g} = \widehat{\mathfrak{sl}}(2)$ CARTAN TYPE $A_1^{(1)}$

$V = L(\Lambda_c)$ Λ_0 : n -TH FUNDAMENTAL WEIGHT.



t	0	1	2	3	$\begin{smallmatrix} 3 \\ 2,1 \\ 1,2 \\ 3 \end{smallmatrix}$
$p(t)$	1	1	2	4	

NOTICE IF $m(t) = \text{MULT}(\mu - t\delta)$

FOR ANY WEIGHT μ IS MONOTONE INCREASING

AND 0 FAR $t \ll 0$.

THEOREM: IF Λ IS DOMINANT WEIGHT FOR AFFINE LIE ALGEBRA \mathfrak{g} , μ A WEIGHT OF $L(\Lambda)$ THEN $\dim V_{\mu-t\delta}$ IS A MONOTONE FUNCTION OF t .

PROOF:

$$\text{CH } L(\Lambda) = \Delta^\vee \sum_{w \in W} \text{sgn}(w) e^{w(\Lambda + \rho) - \rho}$$

$$\Delta = \prod_{\alpha \in \Delta^\vee} (1 - e^{-\alpha})^{\text{mult}(\alpha)} \quad \begin{aligned} \text{mult}(\alpha) &= r \text{ IF } \alpha = n\delta \\ &1 \text{ IF } \alpha \text{ REAL.} \end{aligned}$$

DIVIDE Δ INTO REAL AND IMAGINARY

CONTRIBUTIONS:

$$\Delta = \prod_{n=1}^{\infty} (1 - e^{-n\delta})^r \prod_{\substack{\text{POS.} \\ \text{REAL ROOTS}}} (1 - e^{-\alpha})$$

\mathfrak{g} IS OF TYPE $X_r^{(1)}$ UNTWISTED AFFINE

$X = A, D, E$ BECAUSE

WE WANTED TO SIMPLIFY THINGS AND
CONSIDER SYMMETRIZABLE UNTWISTED CASE.

$$\text{ch } L(\Lambda) = \prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{-1} \times$$

$$\prod_{\alpha \in \Delta^+_{\text{real}}} (1 - e^{-\alpha})^{-1} \sum_{w \in W} e^{w(\Lambda + \rho) - \rho}$$

$$\sum_{t=0}^{\infty} c(t) e^{-t\delta} \cdot \sum_{\mu} d(\mu) e^{\mu}$$

$$\binom{r+1+t}{t}$$

OR SOMETHING.

BOTH $c(t)$ AND $d(\mu)$ ARE NON-DECREASING
POSITIVE FROM $(1-x)^{-1} = (1+x+x^2+\dots)$

AND $c(t)$ IS MONOTONE INCREASING.

COEFFICIENT

$$\text{DIM } V_\mu = \sum_{t=0}^{\infty} c(t) d(\mu - \delta t)$$

$$\text{From this } \text{DIM } V_{\mu-s} = \sum c(t+1) d(\mu - \delta t)$$

$$\geq \text{DIM } V_\mu.$$

AND VANISHES IF $t \leq 0$.

THIS MOTIVATES THE INTRODUCTION OF
STRING FUNCTIONS.

IN THE SEQUENCE

$$m(\mu) = D(m) v_\mu$$

$$\cdots w(n+\delta) \quad m(n) \quad m(n-\delta) \quad m(n-2\delta) \cdots$$

\curvearrowleft \curvearrowright
EVENTUALLY INCREASING.
ZERO

THERE IS A FIRST t SUCH THAT

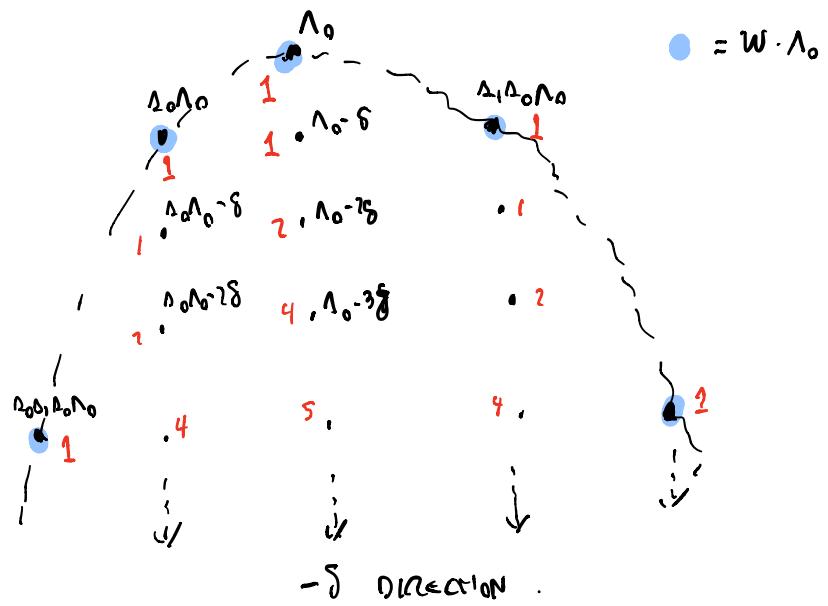
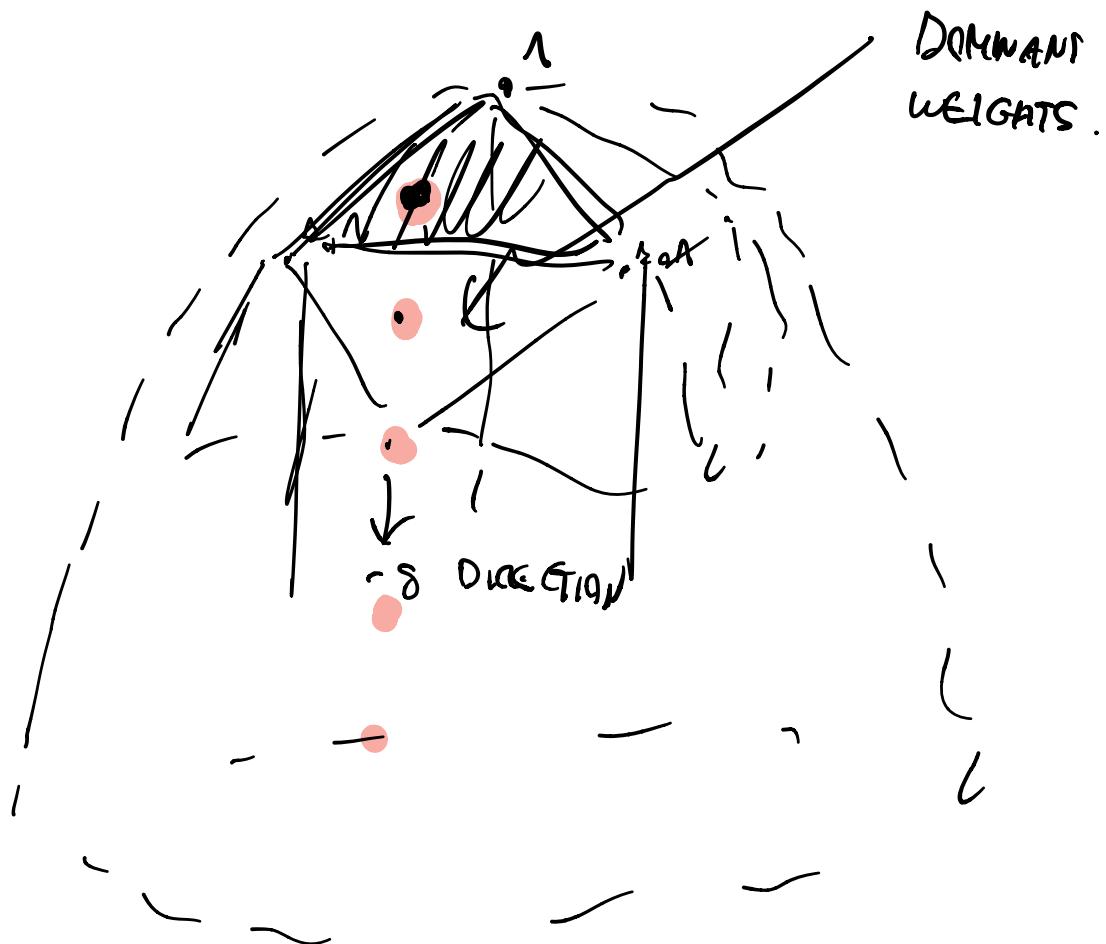
$$m(n-t\delta) \neq 0.$$

IF $m(n-t\delta) \neq 0$ BUT $m(n-(t-1)\delta) = 0$

SAY n IS MAXIMAL. IN EXAMPLE

THE MAXIMAL WEIGHTS ARE

$$w(\Lambda_0) = \dots, \theta_0 \Lambda_0, \Lambda_0, \theta_1 \Lambda_0, \dots$$



MAXIMAL WEIGHTS WILL LIE NEAR THE

PARABOLOID $\{\mu \mid \|\mu\|^2 = \|\Lambda\|^2\}$

(INDEFINITE METRIC).

THE WGRL ORBIT $W \cdot \Lambda$ WILL LIE ON THIS PARABOLOID, THERE MAY BE A FINITE NUMBER OF OTHER ORBITS,

EVERY W ORBIT INTERSECTS THE DOMINANT WEIGHTS $\{\mu \mid \langle \alpha_i^\vee, \mu \rangle \geq 0, i = 0, \dots, r\}$.

THESE ARE FINITELY MANY DOMINANT MAXIMAL WEIGHTS.

AND THE ROOT STRING

$$\sum_{t=0}^{\infty} m(\mu - t\delta) q^t$$

IS ASSOCIATED WITH THIS MAXIMAL DOMINANT WEIGHT.

CANONICAL ELEMENT

$$k = \sum_{i=0}^r a_i^\vee \alpha_i^\vee$$

WEYL GROUP ACTION

IF μ IS ANY WEIGHT $\text{rk} = \langle k, \mu \rangle$

IS CALLED THE LEVEL. EXPLAINED LAST
TIME HOW TO VISUALIZE THE W -ACTION
ON LEVEL rk WEIGHTS. SINCE

$$\text{LEVEL } w(\mu) = \text{LEVEL } (\mu)$$

$$\langle x, w(\mu) \rangle = \langle k, \mu \rangle$$

CHECK FOR $w = \Delta_i$ ($i = 0, 1, \dots, r$).

$$\langle k, \Delta_i(\mu) \rangle = \langle k, \mu - \langle \alpha_i^*, \mu \rangle \alpha_i \rangle$$

$$= \langle k, \mu \rangle \text{ SINCE}$$

$\alpha_i^*(k) = 0$. (DUE TO THE FACT

k IS CENTRAL IN $\mathfrak{g}' = \langle e_i, f_i \rangle$.

SO LEVEL rk PART OF \hat{f}_i^* IS

INVARIANT UNDER W . CALL IT \hat{f}_i^* .

$$\hat{f}_i^* = \hat{f}_0^* + k\Lambda_0$$

Λ_0 IS THE AFFINE FUNDAMENTAL WEIGHT.

$$\begin{array}{ccccc}
 \text{class of } \hat{g}_0^* & \hookrightarrow & \text{class of } \hat{g}_0^* & \supset & \text{class of } \hat{g}_0^* \text{ or } \hat{g}_0^*/\mathbb{C}\delta \\
 \hat{g}_0^* \xrightarrow{\alpha} \hat{g}_{\alpha}^* & \xrightarrow{\text{class of } \hat{g}_{\alpha}^*} & \hat{g}_{\alpha}^*/\mathbb{C}\delta & \xrightarrow{\text{class of } \hat{g}_{\alpha}^*} & \hat{g}_{\alpha}^*/\mathbb{C}\delta \\
 \downarrow \omega^{(\alpha)} & \downarrow \omega & \downarrow \omega & & \downarrow \omega \\
 \hat{g}_0^* & \xrightarrow{\text{class of } \hat{g}_0^*} & \hat{g}_0^*/\mathbb{C}\delta & & \hat{g}_0^*/\mathbb{C}\delta
 \end{array}$$

IF $\lambda \in \hat{g}^*$ EXTEND TO $\hat{\lambda}^*$ BY ZERO ON

K_d . Λ_0 HAS LEVEL 1.

$$P \text{ HAS LEVEL } \alpha^v = \sum_{i=0}^r \alpha_i^v.$$

Λ_i HAS LEVEL α_i^v SO

$$P = \sum_{i=0}^r \Lambda_i \text{ HAS LEVEL } \alpha^v.$$

α^v IS CALLED THE DUAL CARTIER NUMBER.

$$\omega(\delta) = \delta \text{ FOR } \omega \in W.$$

$\delta \in \hat{g}_0^*$ (IN FACT ALL ROOTS
HAVE LEVEL 0.)

WE HAVE AN INDUCED WEYL ACTION ON

\hat{g}_n^* WHICH WE DISCUSSED LAST TIME.

$\Delta_n^{(h)} = \Delta_n$ on \hat{g}_n^* FOR $n = \theta_j, \alpha$.

$\Delta_0^{(h)}$ IS MODIFIED.

$$\Delta_0^{(h)}(x) = \gamma_\theta(x) + h\alpha$$

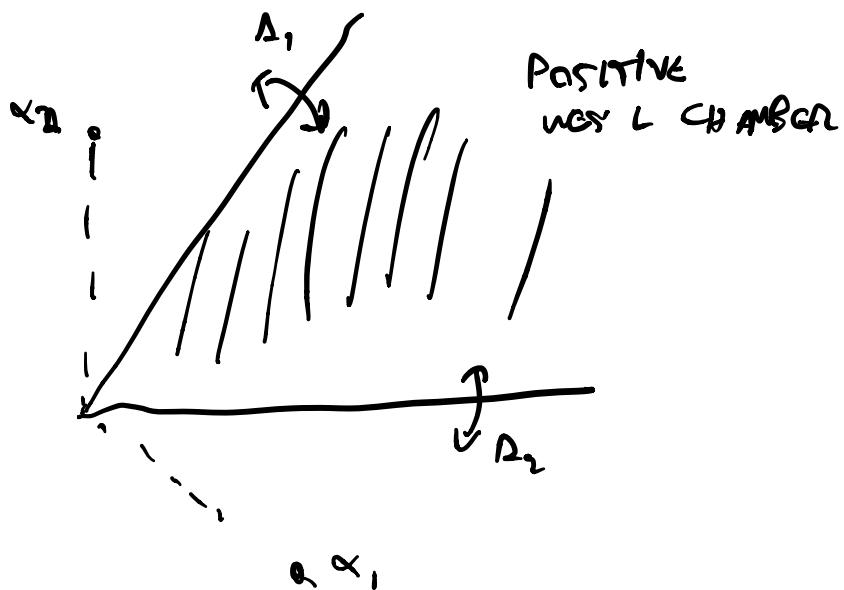
θ = LONGEST
ROOT FOR

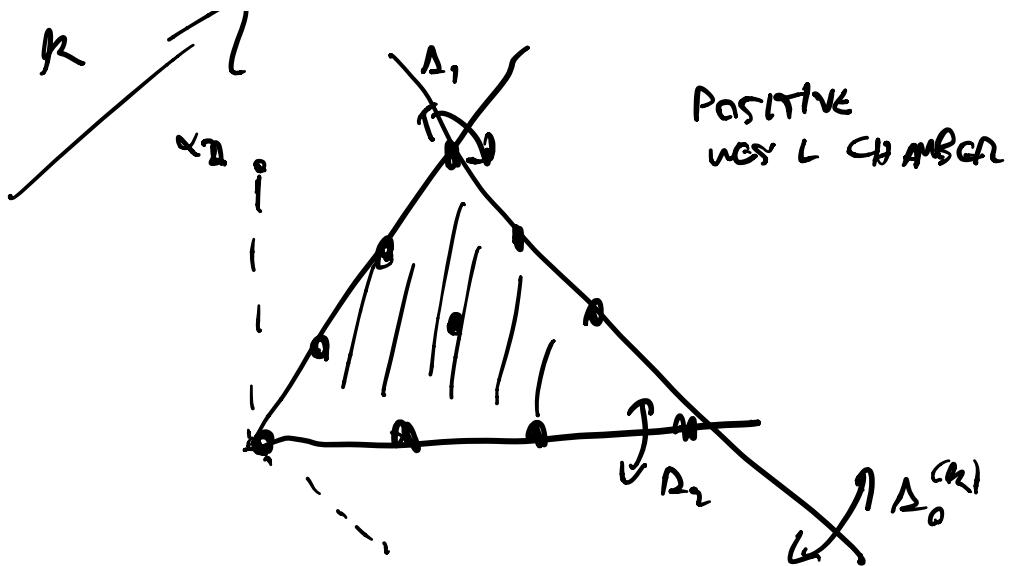
γ_θ = REFLECTION ORTHOGONAL
TO θ

$$\gamma_\theta(x) = x - \langle \theta^\vee, x \rangle \theta.$$

\hat{g}
F
INITE
DIM'L LIE
ALGEBRA

$\hat{sl}(3)$





$$q_2 = 3$$

LEVEL q_2

FUNDAMENTAL ALCOVE.

$$\mathcal{A}_n = \left\{ x \in \mathbb{Z}^r \mid (\alpha_i | x) \geq 0, (\alpha | x) \leq q_2 \right\}.$$

IS A FUNDAMENTAL DOMAIN FOR THIS ACTION. $W = \langle \Delta_0, \Delta_1, \dots, \Delta_r \rangle$.

THEOREM: W IS THE SEMIDIRECT PRODUCT

$$W = \overset{\circ}{W} \cdot Q^{(n)}$$

↑
FINITE
WRT GROUP

$Q^{(n)}$ = GROUP OF
TRANSLATIONS. BY

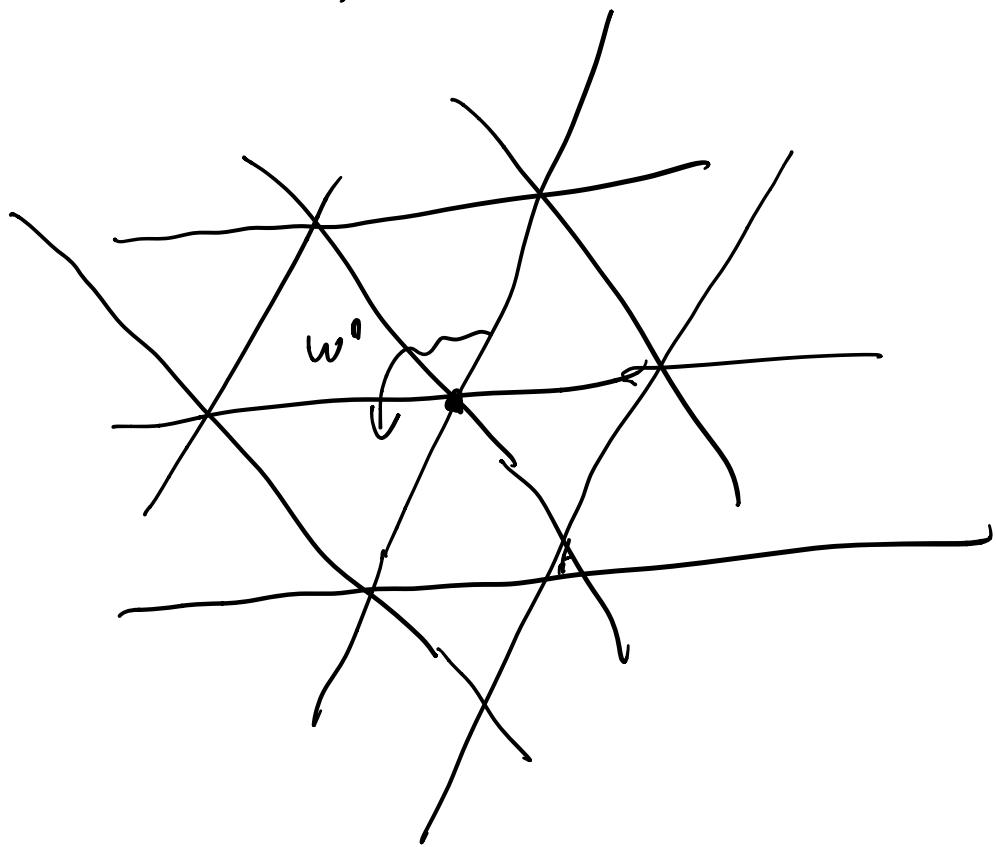
ELEMENTS OF

$$\text{ALSO } W = \langle \Delta_0, \Delta_1, \dots, \Delta_r \rangle$$

$$q_2 Q \quad Q = \text{ROOT LATTICE.}$$

IT IS CLEAR THAT THE GROUPS
 $\overset{\circ}{W}$, $Q^{(h)}$ PRESERVE THE FAMILY OF
 HYPERPLANES $\{(\alpha | x) = m\} = H_{\alpha, m}$

WHERE $h \mid m$, $m \in \mathbb{Z}$.

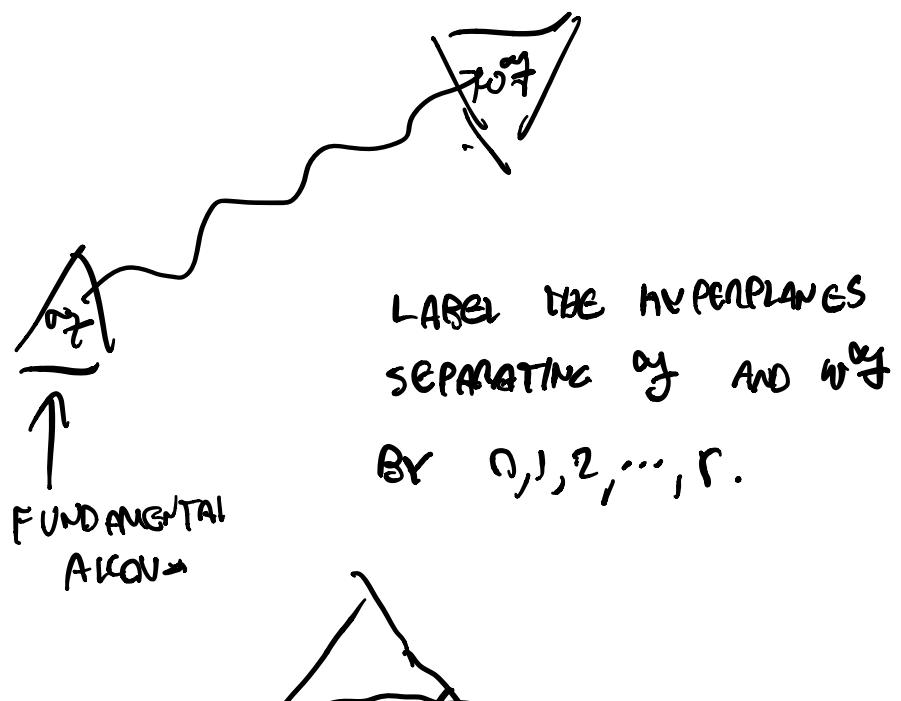


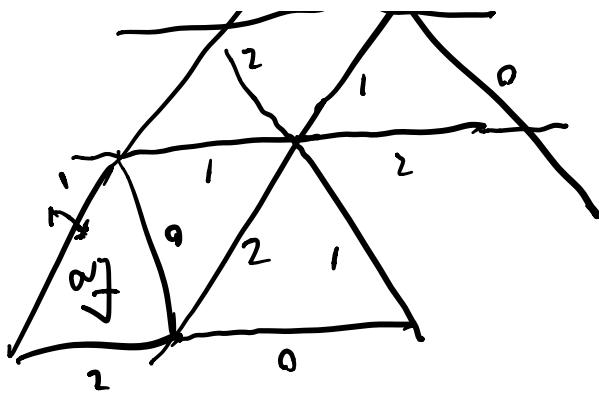
BECAUSE OBVIOUSLY, WE ALLOW
 TRANSFORMATIONS IN $\overset{\circ}{W}$, TRANSLATION IN
 $\mathbb{Z}Q$.

LET US NOTE $\Delta_0, \Delta_1, \dots, \Delta_r$ LIE
IN THIS CAMP $\overset{\circ}{W} \cdot \overset{(h)}{Q}$

$\Delta_1, \dots, \Delta_r \in W^0$ AND $\Delta_0 = Y_\theta \cdot \overset{\text{TRANSLATION}}{\underset{\text{BY } -\theta}{\Delta}}$
 $(\Delta_0, \Delta_1, \dots, \Delta_r) \subset W^0 \cdot \overset{(h)}{Q}$

FOR OTHER DIRECTION IF W IS A
PLANES FORMATION STABILIZING THIS CONFIGURATION
OF HYPERPLANES WE CAN ARGUE $W \in \{\Delta_0, \Delta_1, \dots, \Delta_r\}$
AS FOLLOWS.





STARTING WITH af , BOUNDING HYPERPLANE
IS REFLECTION IN Δ_0 AND LABEL IT \bar{a}

AND ASK THE LABELS BE INVARIANT UNDER w .

CHOOSE A PATH $af \rightsquigarrow waf$.

READING OFF THE LABELS EXPRESSES

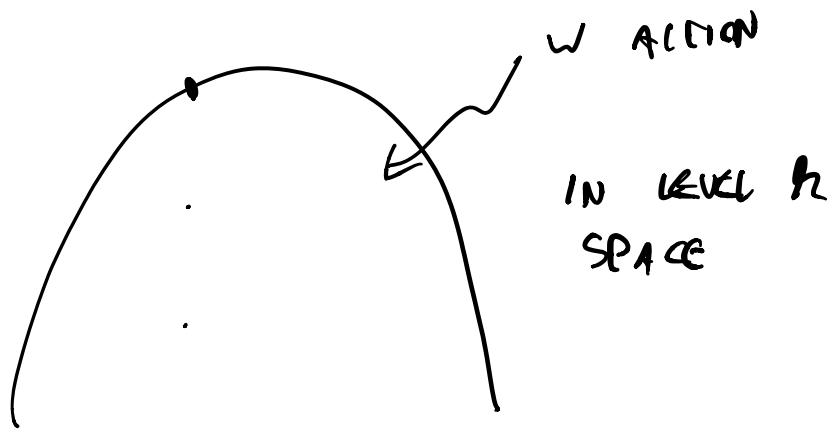
$$waf = \Delta_{i_1} \Delta_{i_2} \cdots \Delta_{i_n} af \Rightarrow$$

$$w = \Delta_{i_1} \cdots \Delta_{i_n} \text{ so}$$

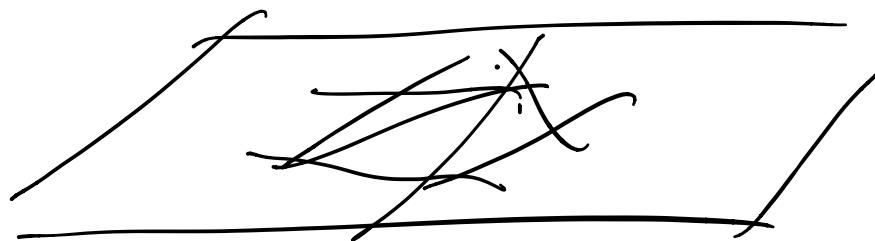
CONCLUSION: THE GROUP PRESERVING
ALL THESE HYPERPLANES IS

$$\{\Delta_0, \Delta_1, \dots, \Delta_r\}.$$

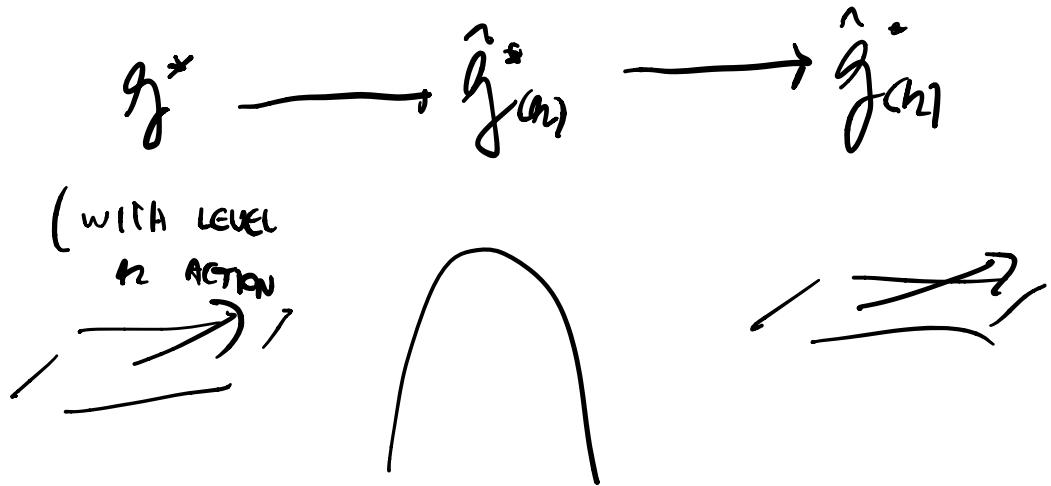
THIS IS $W^{(n)}$ LEVEL n AFFINE
WEYL GROUP.



↓ DIVIDE BY \mathbb{C}^S .



HOW DO THE TRANSLATIONS LIFT FROM



t_α : TRANSLATION IN $\alpha \in hQ$

$$t_\alpha(x) = x + \underbrace{\langle K, x \rangle}_n \alpha + \underbrace{(\ ? \)}_\xi \delta$$

ANSWER:

$$t_\alpha(x) = x + \langle K, x \rangle \alpha - \underbrace{\left((x \mid \alpha) + \frac{1}{2} |\alpha|^2 \right)}_\xi \delta$$

TO CHECK THIS WE USE

$$\|t_\alpha(x)\|^2 = \|x\|^2$$

I AM OUT OF TIME SO WE'LL CHECK THIS
NEXT TIME.

CH 12, 13 of KAC.