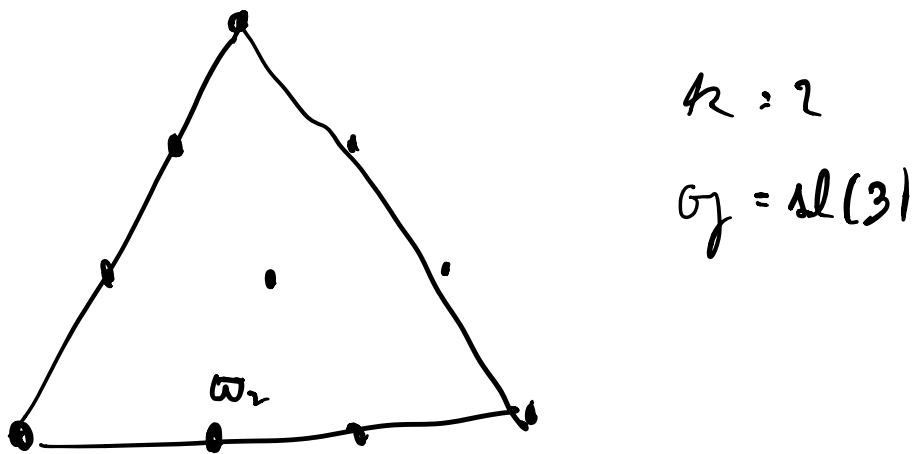


LET g BE A SIMPLE LIE ALGEBRA,
 SIMPLY LACED \hat{g} = UNTWISTED AFFINE LIE
 ALGEBRA.

DOMINANT WEIGHTS OF \hat{g} OF LEVEL n ARE
 IN BIJECTION WITH THE WEIGHTS OF g
 IN THE FUNDAMENTAL alcove of LEVEL n .

$$\left\{ x \in \hat{g}^* \mid \begin{array}{l} (\alpha_i | x) \geq 0 \quad i=1, \dots, r \\ (\alpha | x) \leq n \end{array} \right\}$$



DOMINANT WEIGHTS OF g INSIDE THIS
 ALCOVE.

FOR EXAMPLE

$\Lambda = \omega_2 + 3\Lambda_0$ LEVEL 3 DOMINANT WEIGHT

OF \hat{g} . $L(\Lambda)$

IN THIS CASE THERE ARE 10 REPS
OF THIS TYPE.

THERE IS A BILINEAR OPERATION "FUSION"
ON THE IRREDUCIBLES

$L(\Lambda)$, Λ LEVEL OR DOMINANT.

IN A PREVIOUS TALK, SHOWN YOU A
PAPER OF KAZHDAN-LUSZTIG WHERE THIS
FUSION OPERATION IS DESCRIBED.

THERE IS A CONVENIENT ALGORITHM THE
KAC-WALTON FORMULA FOR COMPUTING THIS.

THIS IS A VARIANT (RACAH-SPEISER,
BRAUER-KLIMK)

OF A TENSOR PRODUCT RULE FOR g .

IF λ, μ ARE DOMINANT WEIGHTS OF g .

$$L(\lambda) \otimes L(\nu) = \bigoplus_{\gamma} N_{\lambda, \nu}^{\gamma} L(\gamma)$$

↑
FINITE-DIMENSIONAL

PROBLEM: COMPUTE $N_{\lambda, \nu}^{\gamma}$.

DECOMPOSE $L(\lambda)$ INTO WEIGHTS.

$$\text{CH } L(\lambda) = \sum_{\mu} c_{\lambda, \mu} e^{\mu}$$

↑
WEIGHT
MULTIPLICITIES
OR KOSTKA
NUMBERS.

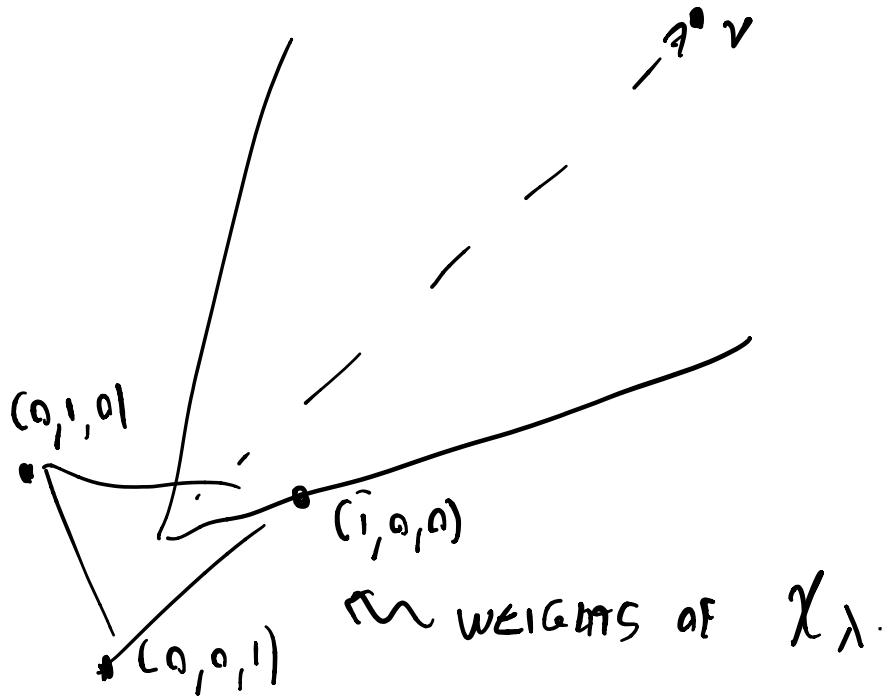
SUPPOSE γ IS SUCH THAT $\gamma + \nu$ IS
DOMINANT FOR ALL μ SUCH THAT $c_{\lambda, \mu} \neq 0$.

THEN

$$\chi_{\lambda} \chi_{\gamma} = \sum_{\mu} c_{\lambda, \mu} \chi_{\mu + \gamma}$$

$$\text{so } N_{\lambda, \nu}^{\gamma} = c_{\lambda, \nu + \gamma}$$

$$\lambda = (1, 0, 0) \text{ FOR } \text{SL}(3)$$



$$\chi_\lambda \chi_\gamma = \chi_{\gamma + (1,0,0)} + \chi_{\gamma + (0,1,0)} + \chi_{\gamma + (0,0,1)}$$

PROOF IS EASY CONSEQUENCE OF WCF.

MORE GENERALLY EXTEND THE NOTATION

χ_γ TO INCLUDE NON-DOMINANT γ .

$$\chi_\gamma = \sum_{\omega \in W} (-1)^{l(\omega)} \ell^{\omega(\gamma + \rho)}.$$

IF γ IS DOMINANT THIS IS THE CHAR
OF AN IRREDUCIBLE.

IF γ IS ARBITRARY FIND $y \in W$
SUCH THAT $y(\lambda + p)$ IS DOMINANT.

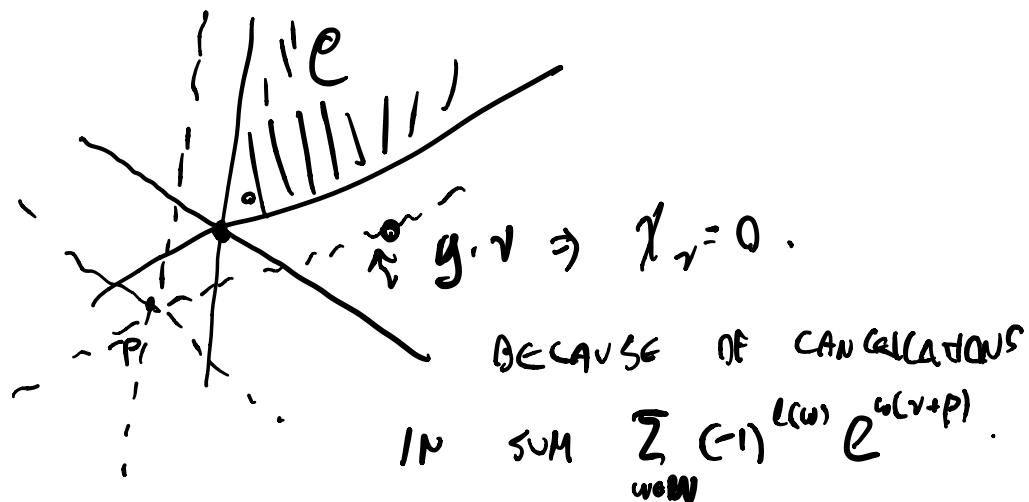
IT MAY OR MAY NOT BE TRUE THAT

$$y \cdot w = y(\lambda + p) - p$$

IS DOMINANT. IF IT IS, A CHANGE
OF VARIABLES SHOWS

$$\chi_\gamma = (-1)^{l(w)} \chi_{w \cdot \gamma}.$$

IF $y(\lambda + p) - p$ IS NOT DOMINANT,
THEN $\chi_\gamma = 0$. THIS HAPPENS
WHEN γ LIES ON A TRANSLATE $\beta \in -p$
OF A WALL OF THE POSITIVE W.C.

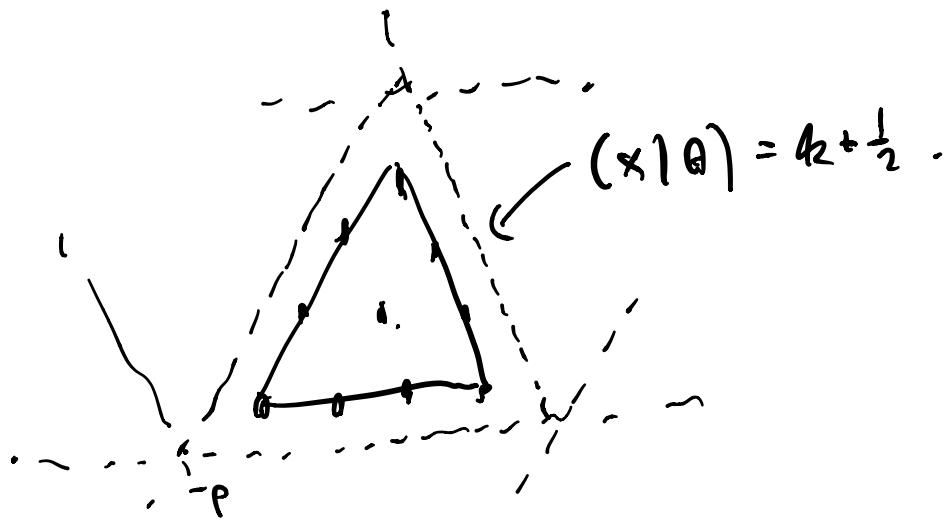


WITH THIS MODIFICATION

$$\chi_\lambda \chi_\nu = \sum_\mu c_{\lambda, \mu} \cdot \chi_{\lambda + \mu}$$

MIGHT BE NEG.
OF AN RR OR
ZERO.

THE KAC-WALTON FORMULA FOR FUSION OF
LEVEL k REPS OF \hat{G} PARAMETERIZED BY
REPS OF G IN THE LEVEL h ALCOVE
USES A VERSION OF DOT ACTION.



THE NEW DOT ACTION IS REFLECTION IN
HYPERPLANES

$$(x + \rho |\alpha|) = w(h + \rho)$$

$x \in \text{ROOTS}$, $w \in W$, involves the indicated hyperplanes. If ν is on the wall of one of the reflecting hyperplanes, interpret

$$\chi_\nu = 0$$

otherwise we reflect it into the level h alcove, multiply by $(-1)^{\# \text{ of reflections}}$ and interpret this

as $\pm \chi_{w \cdot \nu}$
 \uparrow
 AFFINE OR ACTION.

$$\chi_\lambda * \chi_\nu = \sum c_{\lambda, \mu} \chi_{w \cdot (\mu + \rho)}$$

FUSION

CONVENIENT ALGORITHM FOR COMPUTING FUSION. USE FusionRing CLASS

OF SAGE TO COMPUTE THESE DECOMPOSITIONS.

THE REPS OF LEVEL h ARE IN A CATEGORY CALLED LEVEL h FUSION CATEGORY.

(WZW CFT) THERE IS AN ACTION OF $SL(2, \mathbb{R})$ ON THIS CATEGORY THAT I WANT TO DESCRIBE. THE MODULARITY IS RELATED TO THIS ACTION.

THE FUSION CATEGORY IS SEMISIMPLE CATEGORY! EVERY OBJECT IS A DIRECT SUM OF SIMPLE OBJECTS.

Π_λ ($\lambda \in \text{LEVEL } h \text{ FUNDAMENTAL ALGAE}$)

THE CATEGORY IS MONOIDAL MEANING IT HAS A COMPOSITION WHICH IS THE ABOVE FUSION RULE

$$\Pi_\lambda * \Pi_\gamma = \sum_m N_{\lambda\gamma}^m \Pi_m$$

FUSION COEFS.

THIS IS A RIBBON CATEGORY.

IN PRACTICAL TERMS THIS MEANS THERE ARE APPLICATIONS TO KNOT THEORY (JONES POLYNOMIAL) AND POTENTIALLY QUANTUM COMPUTING.

A RIBBON CATEGORY IS A RIGID BRAIDED MONOIDAL CATEGORY WITH RIBBON STRUCTURE.

RIGID: OBJECTS HAVE DUALS.

$$\pi_\lambda^* = \pi_{-w_0 \lambda}$$

$w_0 \in$ (FINITE)
INVERTIBLE GROUP
IS THE LONG
ELEMENT.

IF V IS ANY OBJECT
THERE ARE MORPHISMS

$$C \xrightarrow{\text{coev}} V \otimes V^*$$

'T'
IDENTITY
OBJECT IN
THE MONOIDAL
CATEGORY

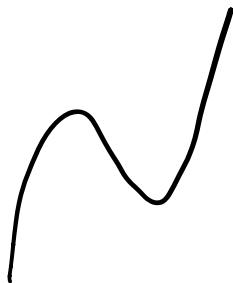
$$V^* \otimes V \xrightarrow{\text{eval}} C.$$

I (INSTEAD OF \mathcal{C})

$V \xrightarrow{I_V \otimes \text{coun}_V} V \otimes V^* \otimes V \xrightarrow{\epsilon_{V^*} \otimes I_V} V$

IDENTITY MORPHISM
 $V \rightarrow V$

$V \xrightarrow{I_V \otimes \text{coun}_V} V \otimes V^* \otimes V \xrightarrow{\epsilon_{V^*} \otimes I_V} V$



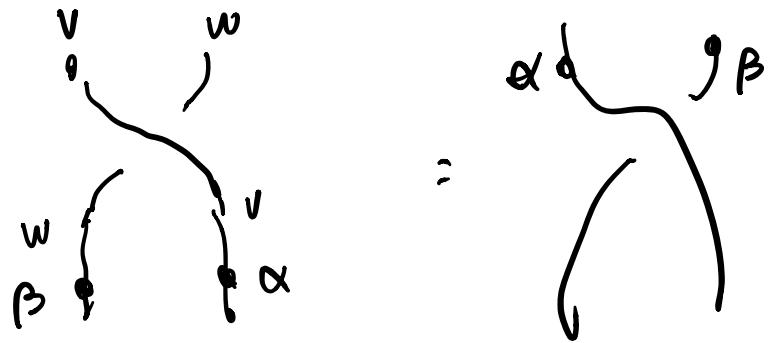
RIGID MONOIDAL
CATEGORY.

BRAIDED: GIVEN OBJECTS $V, W,$

$$c_{V,W}: V \otimes W \rightarrow W \otimes V$$

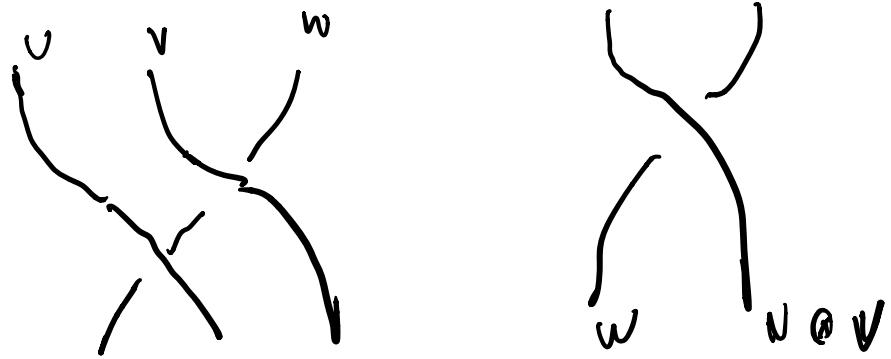
"THE R-MATRIX".

NATURALITY: $\alpha: V \rightarrow V', \beta: V \rightarrow W'$



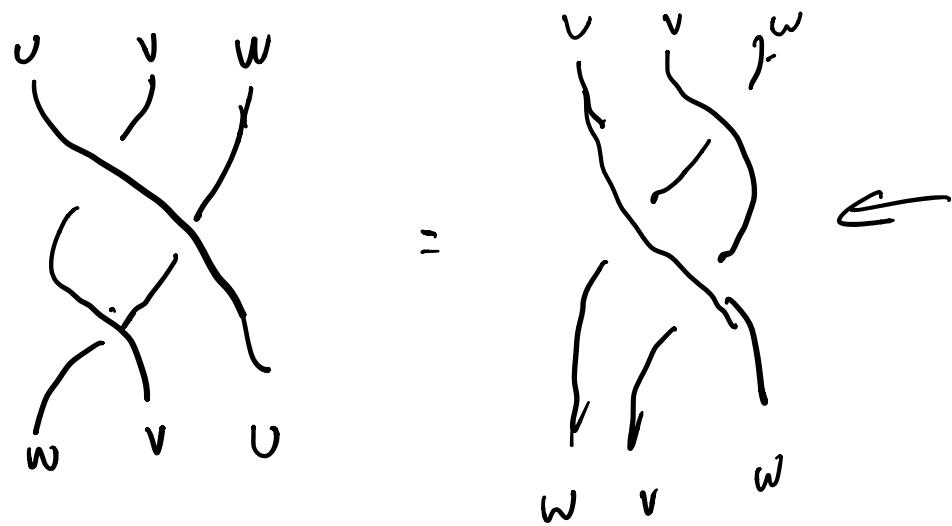
$$(\beta \otimes \gamma) C_{v,w} = C_{v,w}(\gamma \otimes \beta)$$

NATURALITY.



$$(C_{v,w} \otimes I_v) (I_v \otimes C_{v,w}) = C_{v \otimes v, w}.$$

ANOTHER SIMILAR.



"YANG-BAXTER EQUATION".

RIGID BRAIDED CATEGORIES.

ROBISON ELEMENT

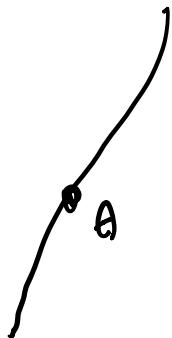
$$\theta_v: V \rightarrow V$$

HAS THE PROPERTY

$$\begin{array}{ccc}
 \text{Diagram: } & & \text{Diagram: } \\
 \text{v} & \text{w} & \text{v} \otimes \text{w} \\
 \text{---} & \text{---} & \text{---} \\
 \theta_v & \theta_w & \theta_{v \otimes w} \\
 \text{---} & \text{---} & \text{---} \\
 & & \text{v} \otimes \text{w}
 \end{array}$$

$$(\theta_v \otimes \theta_w) c_{w,v} c_{v,w} = c_{w,v} c_{w,w} (\theta_v \otimes \theta_w)$$

$$= \theta_{v \otimes w},$$



IN THE FUSION CATEGORY

IF $V = \pi,$

$$\theta_v = e^{\frac{i\pi}{n} (\lambda + 2\rho | \lambda)}$$

EIGENVALUE OF CASIMIR

ELEMENT FOR $g.$

$$e^{\frac{i\pi}{n} (|\lambda + \rho|^2 - |\lambda|^2)}$$

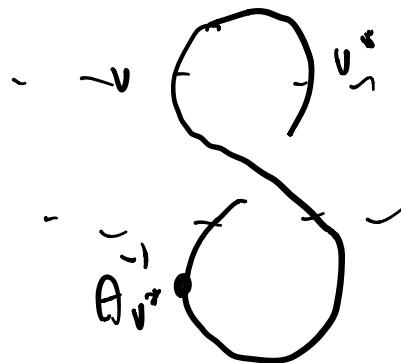
\downarrow

STUFF THAT APPEARS IN THE
THETA FUNCTIONS.

WHAT THE RIBBON ELEMENT IS GOOD FOR:

IN A RIBBON CATEGORY

$f: V \rightarrow V$ IS A MORPHISM
WE CAN DEFINE THE QUANTUM TRACE!



$$I \xrightarrow{\text{coev}} V \otimes V^* \xrightarrow{c_{V,V^*}} V^* \otimes V \xrightarrow{f_V^* \otimes I_V} V^* \otimes V \xrightarrow{\downarrow} I$$

THIS IS SCALAR THIS IS THE
QUANTUM TRACE.

IN LAGEOLOGY OF F. D. V. S. $G_V = 1$

THIS IS THE TRACE OF AN ENDOMORPHISM.

$$th(f \circ g) = th(f) \, th(g).$$

RUBBER CATEGORIES DUE TO TURAGU (+ R?)

THE FUSION CATEGORY IS A
MODULAR TENSOR CATEGORY.

(I) A SEMISIMPLE RIBBON CATEGORY
WITH FINITELY MANY INDECOMPOSABLES.

(II) INERTIAL S-MATRIX.

We define normalized characters

$$f^*(\tau, z, u) \quad \tau \in \mathbb{C} \quad (\operatorname{Im}(\tau) > 0) \\ M \in \mathbb{C} \quad \text{IF we} \\ z = z_1, \dots, z_r \quad \text{N} \& \text{NF} \\ \text{CONVERGENCE}$$

$$(T, \tau, \omega) = \sum z_i \alpha_i^v + T \Lambda_0 + \mu \delta.$$

$$z_1, \dots, z_q \in \mathbb{R}.$$

$$e^{-m_n \delta} \text{ch } \mathcal{L}(1) = \chi_\lambda.$$

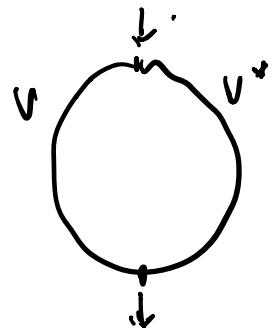
$$m_n = \frac{|\alpha + \rho|^2}{2(n+h^\vee)} - \frac{|\rho|^2}{2h^\vee}.$$

$$\chi_n\left(-\frac{1}{\tau}, \frac{z}{\tau}, n - \frac{|z|^2}{2\tau}\right) = \sum S_{n,n'} \chi_{n'}(\tau, z, u)$$

$S_{n,n'}$ = UNITARY S-MATRIX.

IN RIBBON CATEGORY WE CAN

IDENTIFY $V^{*\#} = V$

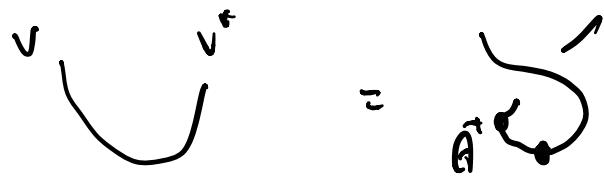


MEANS

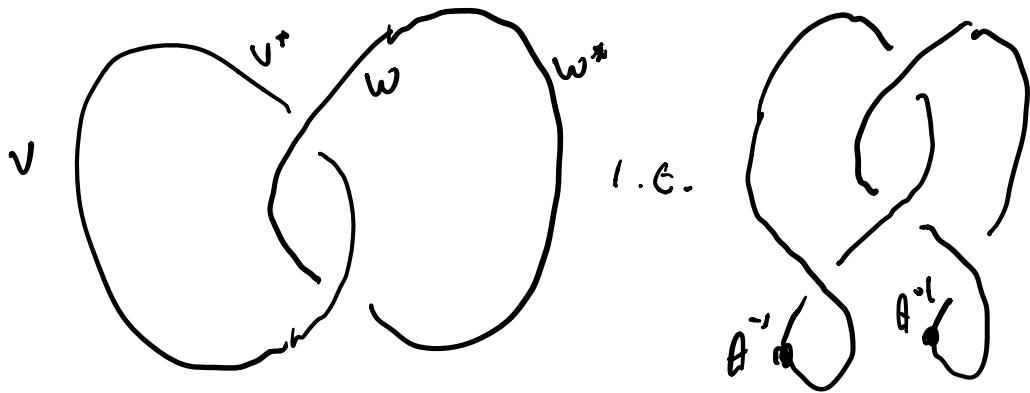
$\text{ev}: V^* \otimes V \rightarrow \mathbb{C}$

NOT $V \otimes V^* \rightarrow \mathbb{C}$.

IDENTIFY $V = V^{*\#}$



EV: $V \otimes V^* \rightarrow \mathbb{C}$ IS DEFINED
USING θ^{-1}



$\text{c}_{\text{EV}} \otimes \text{c}_{\text{EV}}$.
 $\mathbb{C} \rightarrow V \otimes V^* \otimes W \otimes W^*$

$\downarrow c_{v^*, w}$

$V \otimes W \otimes V^* \otimes W^*$

$\downarrow c_{w, v^*}$

$V \otimes V^* \otimes W \otimes W^*$

$\downarrow \text{c}_{\text{EV}} (\text{VINC RUBAN CLT.})$

THIS IS A SCALAR. THIS IS
(UP TO A CONSTANT.)

THIS IS THE S-MATRIX.

RECOMMEND BOOKS OF BAKALOV
KIRILLOV, TURAEV.

CONTINUATION; SEE

<https://sporadic.stanford.edu/quantum/lecture13.pdf>.
14.

$V \otimes W$ RECOVABLE

$U \subset V \otimes W, W \otimes V$

$$\tilde{V} \otimes \tilde{W} \longrightarrow \tilde{W} \otimes \tilde{V}$$

$$\int \phi_{v,w,v}$$

$$V \xrightarrow{\quad \quad \quad ? \quad \quad} V$$

$$\int \phi_{w,v,v}$$

$$U \xrightarrow{Q_V^*} U$$