

$$V = L(\lambda) \quad \lambda \in P_K^+ \quad (\text{i.e. } \lambda \text{ is a dominant weight of level } h = \langle K, \lambda \rangle)$$

Given λ PROVED

$\dim V_{\lambda-n\delta}$ is monotone

zero if $n < 0$

so there is a smallest n in the sequence

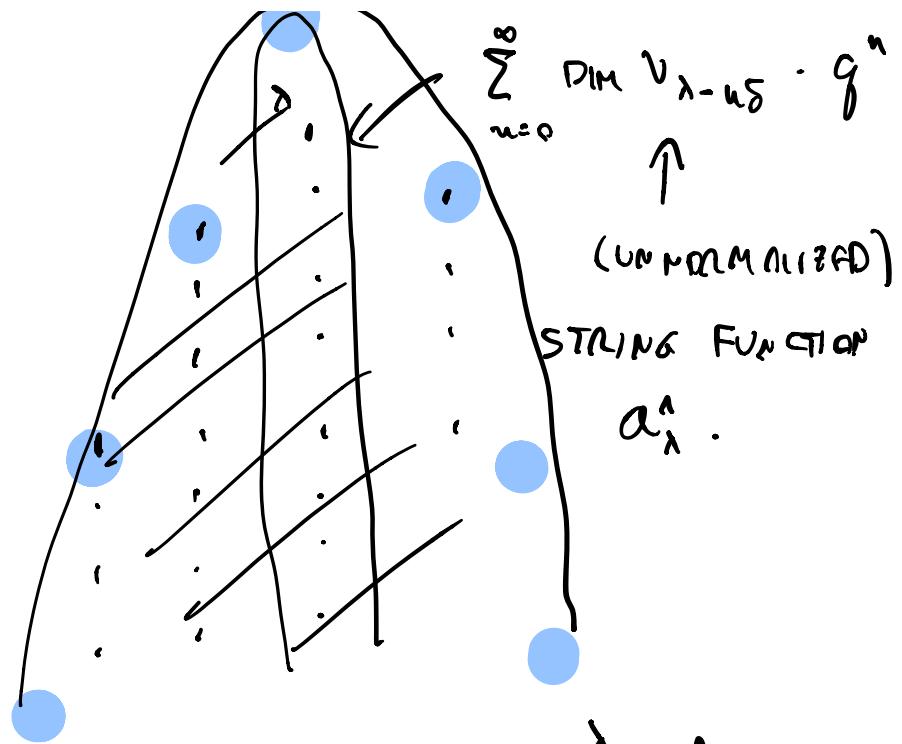
$$\dots, \underbrace{\lambda + \delta}_{\text{smallest}}, \lambda, \lambda - \delta, \dots, \lambda - n\delta, \dots$$

such that $\dim V_{\lambda - n\delta} \neq 0$.

For such n we say $\lambda - n\delta$ is a maximal weight.

$$\begin{aligned} \text{ch } L(\lambda) &= \sum \dim V_\lambda \cdot e^\lambda \\ &= \sum_{\lambda \text{ maximal}} e^{-\lambda} \sum_{n=0}^a \dim(V_{\lambda - n\delta}) q^n \end{aligned}$$

$$q = e^{-\delta}.$$

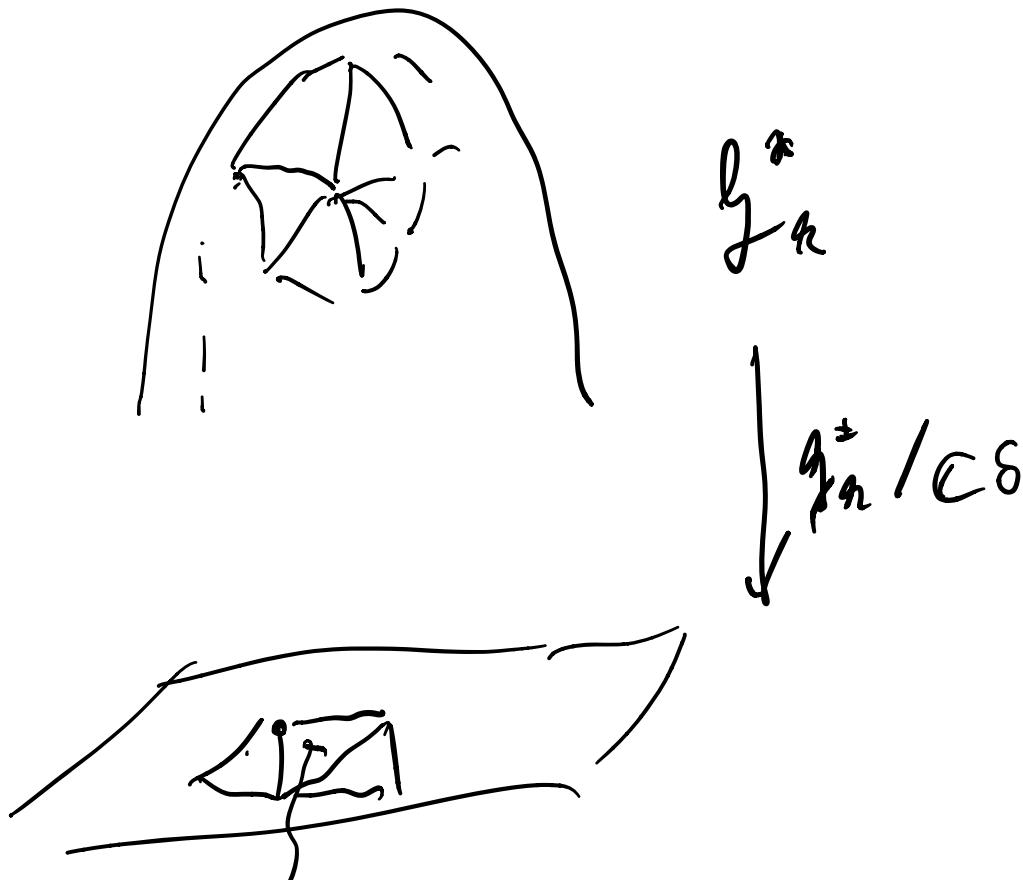


$$\text{ch } L(\lambda) = \sum_{\lambda \text{ MAX'L}} e^{\lambda} a_{\lambda}^n.$$

$$\text{OBSERVE } \dim V_{\lambda - n\delta} = \dim V_{w(\lambda - n\delta)} =$$

$(\text{SINCE } w\delta = \delta)$
 $\dim V_{w\lambda - n\delta}.$

WE CAN COLLECT THE TERMS IN w -ORBITS.
 THERE ONLY A FINITE # OF MAXIMAL
 WEIGHTS THAT ARE DOMINANT.



$$\overset{0}{W} = \{ \Delta_1, \dots, \Delta_r \}$$

WEYL GROUP OF

OF

(F.D. SIMPLY-LACED
SIMPLY LIE ALGEBRA)

$$W = \{ \Delta_0, \Delta_1, \dots, \Delta_r \}$$

AFFINE WYL GROUP

$$= \overset{a}{W} \cdot T$$

↑

T GROUP OF TRANSLATIONS
 $\cong Q$ (ROOT LATTICE).

THE FACT THAT THERE ARE ONLY FINITELY

MANY MAXIMAL DOMINANT WEIGHTS follows
 FROM THE FACT THERE ARE ONLY FINITELY
 MANY WEIGHTS $\tilde{\lambda}$ (PROJECTION of λ)
 INSIDE THE $\tilde{\gamma}^* \rightarrow \gamma^*$
 LEVEL h FUNDAMENTAL
 ALLOCHE, WHICH IS COMPACT.

$$\sum_{\text{a MAXI}} a_{\lambda}^n \sum_{t \in T} e^{t\lambda}$$

↑
 "THERA FUNCTION"

↑
 FINITE
 SUM.

For $h = 1$ THERE ARE 3 WEIGHTS
 IN LEVEL 1 FUNDAMENTAL ALLOCHE

$$\tilde{\lambda} \in \{\Lambda_0, \Lambda_1, \Lambda_2\}$$

↑

1

WEIGHT FOR

sl_3

$$\hat{f}_n^* \longrightarrow \hat{f}_n^*/\ell\delta \underset{\lambda + h\Lambda_0}{\approx} \frac{f^*}{\lambda}$$

Since $\Lambda = \Lambda_0$ there is only one
W-orbit of maximal dominant weights.

more generally, $t_\alpha: \lambda \rightarrow \lambda + h\alpha$ mod

$$\tau = \{t_\alpha \mid \alpha \in Q\}$$

$$t_\alpha(\lambda) = \lambda + h\alpha \sim \left((\lambda|\alpha) + \underbrace{\frac{h}{2}|\alpha|^2}_{\delta} \right) \delta$$

THE DOMINANT MAXIMAL WEIGHTS

CORRESPOND TO THE ELEMENTS OF

THE COSET $\Lambda + hQ$ IN \mathfrak{f}_n = LEVEL
 n FUND.
ALCOVE.

EXAMPLES FOR $\overset{\wedge}{\mathfrak{sl}(3)}$.

$q_2 = 2$ THE LEVEL 2 DOMINANT WEIGHTS
(UP TO A SHIFT BY A MULTIPLE OF δ)

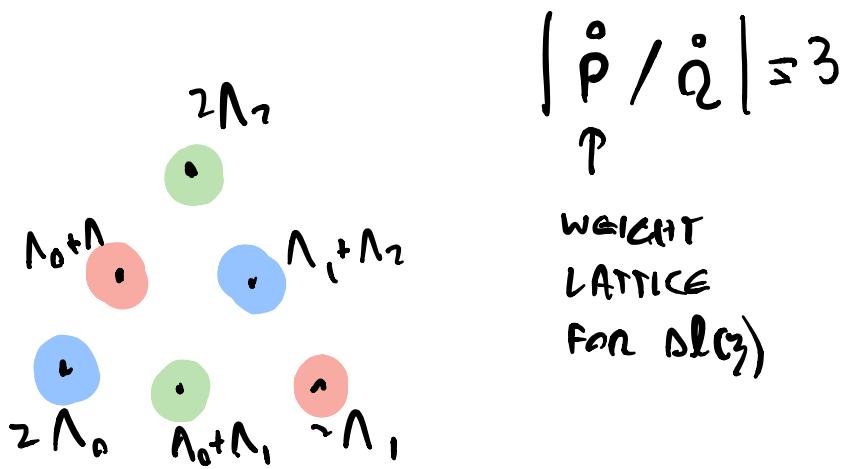
$$2\Lambda_0, 2\Lambda_1, 2\Lambda_2, \Lambda_0 + \Lambda_1, \Lambda_0 + \Lambda_2, \Lambda_1 + \Lambda_2$$

IN EACH CASE THERE ARE 2 ELEMENTS

OF coset $\bar{\Lambda} + kQ$ IN α_2^\vee

$$\bar{\Lambda}_0 = 0$$

$\bar{\Lambda}_1, \bar{\Lambda}_2$ = FUNDAMENTAL WEIGHTS FOR $\mathfrak{sl}(3)$



ELEMENTS WITH SAME COLOR ARE IN SAME
COSSET. $\overline{2\Lambda_0 - (\Lambda_1 + \Lambda_2)} = -\bar{\Lambda}_1 - \bar{\Lambda}_1 = -\theta$ HIGHEST
ROOT

44

IF $\ell_2 = 2$, $L(\lambda)$ HAS TWO DOMINANT
MAXIMAL WEIGHTS.

0 3 λ_2

— 1 —

LEVEL 3

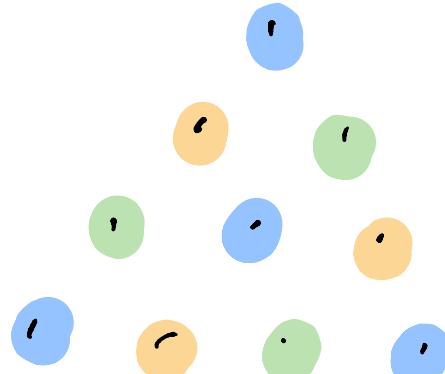
DOM (NAN T
WE 10/1/15).

1 0 0 3 A₀ 3 A₁

^ * a

3

$$\hat{h}_n^* / c\delta \approx \frac{g^+}{\lambda}$$



$L(3\Lambda_0)$ HAS 4 MAXIMAL DOMINANT WEIGHTS
 AS DOES $L(\Lambda_0 + \Lambda_1 + \Lambda_2)$, $L(3\Lambda_1)$, $L(3\Lambda_2)$

(BILINEAR FORM).

THE OTHER DOMINANT WEIGHTS HAVE
ONLY 3.

$$q^{1/24} \prod (1 - q^n) = \eta(\tau) \quad \text{Cusp form of wt}$$

$$\sum_{n=0}^{\infty} q^{(6n+1)^2/24} (-1)^n, \quad 1/2.$$

$$c_{\lambda}(\tau) = \sum_{\substack{\lambda \in \text{MAX}(\tau) \\ \lambda \in P^+}} \left(\sum_{t \in T} e^{t(\lambda)} \right) a_{\lambda}^t.$$

(DOMINANT MAXIMAL
WEIGHTS)

$$a_{2\lambda_0 + \lambda_1}^{\lambda_0 + \lambda_1 + \lambda_2} = q + q^4 + q^{16} + q^{50} + \dots$$

$$q = e^{-\delta} \quad q^{11/10} a_{2\lambda_0 + \lambda_1}^{\lambda_0 + \lambda_1 + \lambda_2}$$

IS A MODULAR FORM.

$m_{\lambda}^{\wedge} = \frac{11}{18}$ IS THE MODULAR CHARACTERISTIC
(TO BE EXPLAINED), β_{11}, \dots

$$t_\alpha(\lambda) = \lambda + h\alpha - \frac{1}{2h} \left(|\lambda + h\alpha|^2 - |\lambda|^2 \right) \delta$$

$$(\lambda|\alpha) + \frac{h}{2} |\alpha|^2.$$

$$\Theta_\lambda = e^{-\frac{|\lambda|^2}{2h}\delta} \sum_{\alpha \in Q} e^{t_\alpha(\lambda)}$$

--- $\alpha \in Q$ ↑

↑

NEEDED to
MAKE Θ_λ
A THETA FUNCTION.

$$e^{\lambda + h\alpha} e^{-\frac{1}{2h} |\lambda + h\alpha|^2 \delta}$$

THE WEGL CHARACTER FORMULA HAS FORM

$$c_{\lambda} \chi(\lambda) = \Delta^{-1} \sum_{w \in W} (-1)^{l(w)} e^{w(\lambda + \rho) - \rho}$$

$$= \underset{\sim}{A_\rho^{-1}} \Lambda_{\lambda + \rho}$$

$$A_\lambda = \sum_{w \in W} (-1)^{l(w)} e^{w(\lambda)}$$

$$t_\alpha(\lambda)$$

$$\lambda = \bar{\lambda}$$

$\bar{\lambda}$ = PROJECTION on \mathfrak{g}^* $\lambda \in \mathfrak{f}_2^*$.

$$(?) \quad \lambda = \bar{\lambda} + h\Lambda_0 + \left(\frac{|\bar{\lambda}|^2 - |\lambda|^2}{2h} \right) \delta$$

$$t_\alpha(\lambda) = q_2 \Lambda_0 + (\bar{\lambda} + h\alpha) + \frac{1}{2h} (|\lambda|^2 - |\bar{\lambda} + h\alpha|^2) \delta$$

$$\sum_{w \in W} (-1)^{l(w)} \ell^{w(p)-p} =$$

$$W = \overset{\circ}{W} \cdot T \quad \ell^{-p} \sum_{w \in \overset{\circ}{W}} (-1)^{l(w)} \sum_{\alpha \in Q} e^{t_\alpha w(p)}$$

$$T = \{t_\alpha | \alpha \in Q\}$$

$$\ell^{-p + \frac{|P|^2}{2h} \delta} A_p.$$

P HAS LEVEL h^v = DUAL COXETER NUMBER

$$m_\Lambda = \frac{|\Lambda + P|^2}{2(h^v + h)} - \frac{|P|^2}{2h^v}$$

$h^v + h =$ LEVEL

OF $\Lambda + P$

$$m_{\Lambda, \lambda} = m_\Lambda - \frac{|\lambda|^2}{2h} \quad h = \text{LEVEL OF } \Lambda, \lambda.$$

$$\mathbb{H}_\lambda = e^{-n\Lambda_0} \sum_{\gamma \in Q^+ \setminus \frac{1}{n}\lambda} e^{-\frac{1}{2} \alpha \langle \gamma, \gamma \rangle \delta + h_\gamma \gamma}$$

$$\mathbb{H}_\lambda = e^{-\frac{1}{2} \lambda_1^2 \delta} \sum_{\alpha \in Q} e^{t_\alpha(\lambda)}$$

$$t_\alpha(\lambda) = q_2 \Lambda_0 + (\bar{\lambda} + q_2 \alpha) + \frac{1}{2n} \left(|\lambda_1|^2 - |\bar{\lambda} + q_2 \alpha|^2 \right) \delta$$

$$\gamma = \frac{1}{\lambda} (\bar{\lambda} + q_2 \alpha)$$

$$\chi_\lambda = e^{-m_\lambda \delta} c_\lambda L(\lambda)$$

$$c_\lambda^\wedge = e^{-m_{\lambda, \lambda} \delta} a_\lambda^\wedge$$

NORMALIZED
STYLING FUNCTIONS.
MODULAR FORMS

$$\chi_n = \sum_{\text{MAX WEIGHT}} c_\lambda^\wedge \mathbb{H}_\lambda. \quad \mathbb{H}_\lambda \text{ IS A}$$

MODULAR FORM.

USING POISSON
SUMMATION ON
KAC CH. 13.

COMPARING THIS TO THE FORMULA

$$\chi_\lambda = \frac{A_{\lambda+p}}{A_p} \text{ will produce}$$

INFORMATION ABOUT C_λ^\wedge . (Ch. 13, next week.)

THE MODULE $\mathbb{L}(\lambda)$ IS ALSO A
MODULE FOR VIRASORO ALGEBRA.

$$\bigoplus_{n=1}^{\infty} \mathbb{C} d_n + \mathbb{C} \cdot c$$

$$d_n = -t^{n-1} \frac{d}{dt} \bigg|_{t=1} \text{ in } \mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathbb{V}.$$

$$\text{EXCEPT } d_0 = -c \text{ of } \mathbb{V}.$$

IF WE MAKE CENTRAL EXTENSION

$$\text{VIR} = \bigoplus \mathbb{C} d_n \oplus \mathbb{C} c$$

$$[d_m, d_n] = (n-m) d_{m+n} + \frac{n^3 - n}{12} \delta_{m+n} \cdot c$$

FIRS INTO A S.D.P. WITH $L(\lambda)$.

($L(\Lambda)$ IS INVARIANT SUMMAND.)

IT IS POSSIBLE TO FIND COMPATIBLE
ACTIONS OF $V(\Lambda)$ AND $\hat{\phi}_j$ ON $V(\Lambda)$.
SO GWUARRA CONSTRUCTION IN CH, 12 OF
KAC.

WESS ZUMINN WITTEN C.F.

$g_f \cdot \bigoplus L(\Lambda) \otimes L(\Lambda)$ HILBERT
SPACE.
WEIGHS
IN LEVEL Λ
ALONE.

G.G. $\Lambda_0, \Lambda_1, \Lambda_2$ IF $h = 1$

THE t WHICH APPEARED IN $R[t] \otimes g$.
CAN BE THOUGHT OF AS A PARAMETER
IN RIEMANN SPACES IP'

GIVEN A POINT $x \in \mathbb{P}^1$ AND

$v \in L(\Lambda)$ A LEVEL Λ .

THERE IS A "FIELD" OF OPERATORS

ON \mathcal{H} . WE CAN ITERATE THESE.



TAKE FIELD AT 0, COMBINE IT WITH

FIELD AT 1, DECOMPOSE IT

("OPERATOR PRODUCT EXPANSION") AT ∞ .

THE 3 POINTS ARE UNIMPORTANT

BECUSE $SL(2, \mathbb{C})$ IS 3-TRANSITIVE.

THIS GIVES A KIND OF TENSOR STRUCTURE

ON THE REPS $L(\lambda)$ (A LEVEL).