

MODULAR FORMS

THETA FUNCTIONS

CHARACTERS OF AFFINE LIE ALGEBRAS AS MODULAR FORMS

$$SL(2, \mathbb{R}) \backslash \mathbb{H} = \{ \tau : x + iy \mid y > 0 \}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : \tau \mapsto \frac{a\tau + b}{c\tau + d}.$$

$\Gamma(1) = SL(2, \mathbb{Z})$ DISCRETE SUBGROUP OF
 $SL(2, \mathbb{R})$

$\Gamma(1) \backslash \mathbb{H}$ is NOT COMPACT

$SL(2, \mathbb{R}) \backslash SL(2, \mathbb{Z})$ NOT COMPACT

THESE QUOTIENTS HAVE FINITE VOLUME

IN INVARIANT MEASURE

$$\int_{\Gamma(1) \backslash \mathbb{H}} \frac{dx \wedge dy}{y^2} < \infty$$

SUBGROUPS OF FINITE INDEX IN $\Gamma(1)$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$
 NORMAL

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid c \equiv 0 \pmod{n} \right\}$$

↑

SOAR OF UNIVERSAL FOR MANY PURPOSES.

A MODULAR FORM OF WT k FOR

$$\Gamma \quad (\in \Gamma_0(N) \text{ OR } \dots)$$

$$f: \mathbb{H} \rightarrow \mathbb{C} \quad k \geq 0, \quad k = \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

$$f\left(\frac{az+b}{cz+d}\right) = (\pm) (cz+d)^k f(z)$$

(*) WOULD BE A CHARACTER E.G.

$$\text{IF } \Gamma = \Gamma(N), \quad n \in \mathbb{Z}$$

$$(\pm) = \chi(d) \quad \chi: \mathbb{Z}/d\mathbb{Z} \rightarrow \mathbb{C}$$

A DIRICHLET CHARACTER

$$\chi(nm) = \chi(n)\chi(m)$$

$$\chi(n) = 0 \iff \text{GCD}(n, N) > 1.$$

IF $N = \frac{1}{2}, \frac{3}{2}, \dots$ (*) MIGHT BE
MORE COMPLICATED
TO DESCRIBE

$$f\left(\frac{a\tau + b}{c\tau + d}\right) = j(g, \tau) f(\tau)$$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

$$j(g, \tau) = (\det(c\tau + d))^k$$

$$j(g_1 g_2, \tau) = j(g_1, g_2 \tau) j(g_2, \tau)$$

IF f IS HOLOMORPHIC AND BOUNDED

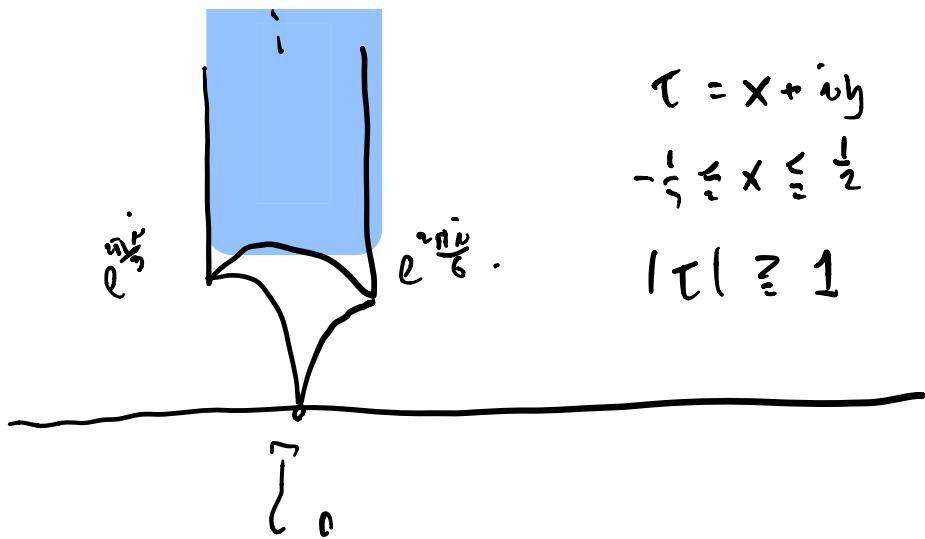
NEAR CUSPS THEN f IS CALLED A
MODULAR FORM OF WEIGHT k .

CUSPS ARE REPRESENTATIVES OF Γ ORBIT
OF ACTION ON BOUNDARY POINTS.

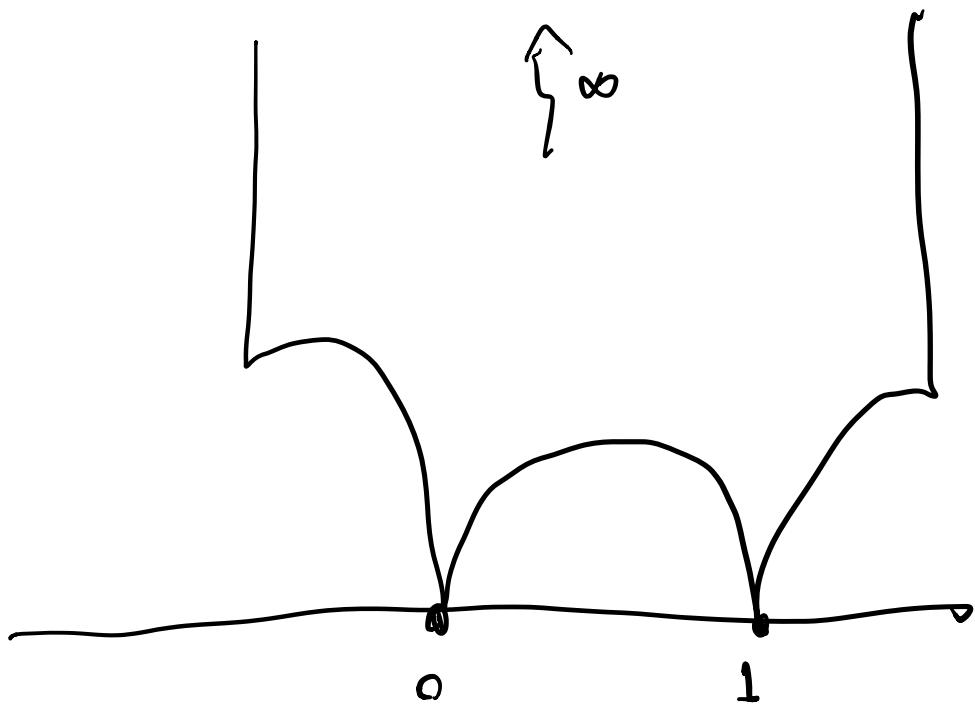
$$\mathbb{Q} \cup \{\infty\}$$

FOR $SL(2, \mathbb{R})$ THERE IS ONE CUSP, ∞ .

THIS REFLECTS THE FUNDAMENTAL DOMAIN:



$0, \infty$ ARE SAME Γ ORBIT SO
 THEN REPRESENT SAME CUSP.



SOME OTHER Γ . WITH 3 CUSPS.

AMONG MODULAR FORMS THAT
THAT VANISH AT CUSPS ARE CALLED
CUSP FORMS.

RAMANUJAN'S CUSP FORM OF WEIGHT 12:

$$q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \Delta(\tau)$$

$$q = e^{2\pi i \tau} \quad \tau \in \mathbb{H} \Rightarrow |q| < 1.$$

$$\Delta\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^{12} \Delta(\tau)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z}) .$$

AROSE FROM THEORY OF ELLIPTIC CURVES.

PRODUCT SHOWS $\Delta \neq 0$ ON \mathbb{H}

BUT $\Delta \rightarrow 0$ AS $\tau \rightarrow \infty$ ($q \rightarrow 0$).

$$\Delta^{1/24} = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) = \gamma(\tau).$$

THIS IS DEDEKIND'S ERA

$$\gamma(\tau) = \sum_{-\infty}^{\infty} (-1)^n q^{(6n+1)^2/24}.$$

THE $q^{1/24}$ IS NEEDED TO COMPLETE

THE SQUARE IN THE QUADRATIC

$$(6n+1)^2/24.$$

$$q^{1/24} \prod (1 - q^n) = \prod (-1)^n q^{(6n+1)^2/24}$$

CAN BE DEDUCED FROM JTP

(SEE LECTURE 0.)

THETA FUNCTIONS.

SUPPOSE $Q \in \text{MAT}_n(\mathbb{Q})$

$Q = {}^t Q$ I WANT TO ASSUME

Q IS POSITIVE DEFINITE. THEORY
OF THETA FUNCTIONS FOR INDEFINITE
QUADRATIC FORMS IS VERY SUBTLE.

(C. L. SIEGEL AND OTHERS.)

$$\theta_Q(\tau) = \sum_{x \in \mathbb{Z}^n} e^{-\pi Q[x]\tau}$$

$$Q[x] = {}^t x Q x$$

$$Q = (a_{ij}) \quad a_{ii} = a_{jj}$$

$$Q[x] = \sum_{i,j} a_{ij} x_i x_j.$$

For example $n=1$:

$$Q = (1)$$

$$\theta_Q(\tau) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 \tau}.$$

JACOBI THETA FUNCTION.

IF WE INSTEAD ALLOW SUMMATION

OVER COVERS OF \mathbb{H}^n IN Q^n

WE COULD GET

$$\sum_{\substack{\sim \\ \uparrow}} e^{-\pi (6n+1)^2/24}$$

TAKE A LINEAR COMBINATION OF

TWO OF THESE:

$$\sum (-1)^n e^{-\pi (6n+1)^2/24} = \gamma\left(\frac{\tau}{2}\right)$$

$$q = e^{2\pi i \tau}$$

$$A_Q(\tau) = \sum_{k \in \mathbb{Z}^n} e^{-\pi Q[x]\tau}$$

NICEST CASE IF $Q \in \text{MAT}_n(\mathbb{R})$

$\det(Q) = 1$ AND Q HAS $\alpha_{ii} = 0 \forall i$.

THIS CAN ONLY HAPPEN IF $8 \mid n$.

IN THIS CASE

$A_Q(\tau)$ IS MODULAR FOR
FOR $SL(2, \mathbb{A})$.

($Q = E_8$ ROOT LATTICE, WEECH LATTICE)
 $n = 24$

I will argue that A_Q is a modular form without having to make the group explicit. But KAC CHAPTER 13 HE HAS RESULTS FOR EXPLICIT LEVEL (i.e. PARTICULAR GROUP Γ) Prop 13.6.

NOTICE THAT Q HAS POSSIBLY DENOMINATORS BUT IF $N = \text{GCD}$ OF THESE

$$A_Q(\tau) = \sum e^{-\pi Q[x]} \tau$$

$$A_Q(\tau) = \Theta_Q(\tau + n) \quad \text{PROVIDED}$$

$$2N \mid n. \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

I WILL SHOW THAT THERE IS
 A MODULAR RELATION BETWEEN
 $\theta_Q(\tau)$ AND $\theta_Q\left(-\frac{1}{\tau}\right)$

$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ WILL RUN
 THROUGH CERTAIN
 OTHER QUADRATIC
 FORMS.

POISSON SUMMATION FORMULA.

IF $f \in \mathcal{S}(\mathbb{R})$ OR SCHWARTZ
 SPACE

$$\sum_{-\infty}^{\infty} f(n) = \sum_{-\infty}^{\infty} \hat{f}(n)$$

$$\hat{f}(x) = \int_{-\infty}^{\infty} e^{-\pi i x y} f(y) dy.$$

SKETCH OF THE PROOF:

DEFINE $F(x) = \sum_{n=-\infty}^{\infty} f(x+n)$

SMOOTH & PERIODIC

$$F(x) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}$$

$$a_n = \int_0^1 F(x) e^{-2\pi i n x} dx$$

$$= \int_0^1 \sum_{k=-\infty}^{\infty} f(x+k) e^{-2\pi i n x} dx$$

$$\rightarrow \int_{-\infty}^{\infty} f(x) e^{-2\pi i n x} dx = \hat{f}(-n)$$

$$\sum_{n=-\infty}^{\infty} f(x+n) = \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi i n x}$$

SET $n = c$ GIVES

$$\sum f(n) = \sum \hat{f}(n).$$

$$f_c(x) = e^{-\pi t x^2}$$

$$\hat{f}_t(x) = \frac{1}{\sqrt{t}} \hat{f}(1/t)(x)$$

$$\begin{aligned} \hat{f}_0(x) &= \int_{-\infty}^{\infty} e^{-\pi t y^2} e^{2\pi i x y} dy \\ &= e^{-\pi x^2/4} \int_{-\infty}^{\infty} e^{-\pi \left(\frac{i}{4}x - ty\right)^2} dy. \end{aligned}$$

USE CAUCHY'S THEOREM TO
MOVE PATH OF INTEGRATION.

$$e^{-\pi x^2/t} \int_{-\infty}^{\infty} e^{-\pi t^2/b^2} dt$$

$$= \frac{1}{\sqrt{\pi}} e^{-\pi x^2/t}$$

$$\int_{-\infty}^{\infty} e^{-\pi n^2 t} = \frac{1}{\sqrt{t}} \sum_{n=-\infty}^{\infty} e^{-\pi n^2/t}$$

$$A(it) = \sum_{n=-\infty}^{\infty} q^{n^2}$$

now $q = e^{-\pi t} \leftarrow \text{WANT } e^{2\pi i w t}$

$$A\left(\frac{i}{2}t\right) = \frac{1}{\sqrt{t}} A\left(\frac{i}{2t}\right).$$

REPLACING $\frac{i\tau}{2}$ BY τ

$$A(\tau) = \frac{1}{\sqrt{-2\pi\tau}} A\left(\frac{1}{4\tau}\right).$$

COMBINE THIS WITH $A(\tau+1) = A(\tau)$

GIVES MODULARITY FOR THE GROUP

GEN'D BY

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1/2 \\ -1 & 0 \end{pmatrix}.$$

THIS GROUP IS CONJUGATE IN
 $SL(2, \mathbb{R})$ TO $\Gamma_0(4)$.

FOR MORE GENERAL Q .

FIND S A SYMMETRIC MATRIX

such that $S^2 = Q$

$$A_Q = \sum_{x \in \mathbb{Z}^n} e^{-\pi S[x] \tau}$$

use Poisson summation formula

for \mathbb{R}^n . $\sum_{x \in \mathbb{Z}^n} f(x) = \sum_{x \in \mathbb{R}^n} \hat{f}(x)$

the Fourier transform may be
computed and

$$A_Q(\tau) = \frac{1}{(-i\tau)^{n/2}} A_Q^{-1}\left(-\frac{1}{\tau}\right)$$

$(, -1)$ gives modularity rot
sends $Q \rightarrow Q'$

$\begin{pmatrix} 1 & \\ 0 & 1 \end{pmatrix}$. So θ_Q is a
 MODULAR FORM. WE COULD GET
 MORE PRECISE FORMULAS FOR PARTICULAR
 Q .

GOING BACK TO THE CHARACTER
 OF AN AFFINE LIE ALGEBRA \mathfrak{g} .
 $\text{ch } L(\lambda) = \Delta^+ \sum_{w \in W} (-1)^\omega e^{w(\lambda + \rho)}$
 $\lambda \in P^+$

$$\begin{aligned}
 \Delta = e^\rho \prod_{\alpha \in \Delta^+} (1 - e^{-\rho}) &= \\
 \sum_{w \in W} (-1)^{e(w)} e^{w(\rho) - \rho}
 \end{aligned}$$

WE CAN MANIPULATE THIS BY
USING SEMIDIRECT PRODUCT
DECOMPOSITION OF W :

$$W = \overset{\circ}{W} \rtimes_T P$$

FINITE
WEYL GROUP
OF \mathfrak{g} .

T IS THE GROUP OF "TRANSLATIONS"

BY ELEMENTS OF \mathbb{Q} ($=$ ROOT LATTICE)

$$\alpha \in \mathbb{Q} \Rightarrow t_\alpha \in W$$

$$t_\alpha(x) = \underbrace{\lambda + h\alpha}_{\text{QUADRATIC.}} + \underbrace{\left((\lambda|\alpha) + \frac{h}{2}|\alpha|^2\right)\delta}$$

$$\langle \kappa, \alpha \rangle = h \text{ "level" constant
THROUGH OUT. (ALL WEIGHTS)}$$

OF $L(1)$ HAVE
LEVEL α .

$$\begin{array}{ccc}
 P_R & \subset \hat{\mathcal{J}}_R^* & \rightarrow \hat{\mathcal{J}}_R^*/\mathcal{O}^* \\
 \uparrow \text{WEIGHTS} & \uparrow & \uparrow \\
 \text{OF LEVEL } R & & \text{ON THIS PIECE} \\
 & & t_\alpha \text{ ACTS} \\
 & & \text{BY } \lambda \mapsto \lambda + t_\alpha \\
 & & \text{mod } \mathcal{O}.
 \end{array}$$

$$t_\alpha(\lambda) = \lambda + \underbrace{h\alpha}_{\sim} - \underbrace{\left((\lambda|\alpha) + \frac{h}{2}|\alpha|^2 \right)}_{\sim} \delta$$

$$\Delta^{-1} \sum_{\omega \in \mathbb{W}} (-1)^{l(\omega)} e^{i \omega(\lambda + \rho)}$$

$$= \Delta^{-1} \sum_{\mu \in \mathbb{W}^0} \sum_{\alpha \in Q} (-1)^{l(\omega)} e^{i \omega t_\alpha(\lambda + \rho)}$$

$$t_\alpha(\lambda) = \lambda + \theta_\alpha - \frac{1}{2n} \left((\lambda + \theta_\alpha) \mid \lambda + \theta_\alpha \mid + \frac{1}{2n} |\lambda|^2 \right) \delta$$

SUMMATION OVER α PRODUCES

A THETA FUNCTION.

$$\Delta^+ \sum_{w \in W^0} (-1)^{l(w)} \sum_{\alpha \in Q} e^{wt_\alpha(\lambda)}$$

THE EXPLICIT FORMULA FOR $t_\alpha(\lambda)$
SHOWS THE INNER SUM IS A
THETA FUNCTION. ($q = e^{-\delta}$)

$$\Delta^+ \sum_{w \in W^0} (-1)^{l(w)} \Theta_{w(\lambda)}$$

$$(\mathbb{H})_{w(\lambda)} = \sum_{\alpha \in \mathbb{Q}_+} e^{t_{w(\lambda)} \alpha}$$

k_A completes the square

Modifies the character by

considering

$$e^{-\frac{1}{2n} \lambda^2} \cdot \text{ch } L(\lambda) =$$

$$\lambda \rightarrow e^{-\frac{1}{2n} \lambda^2} (\mathbb{H})_{w(\lambda)}$$

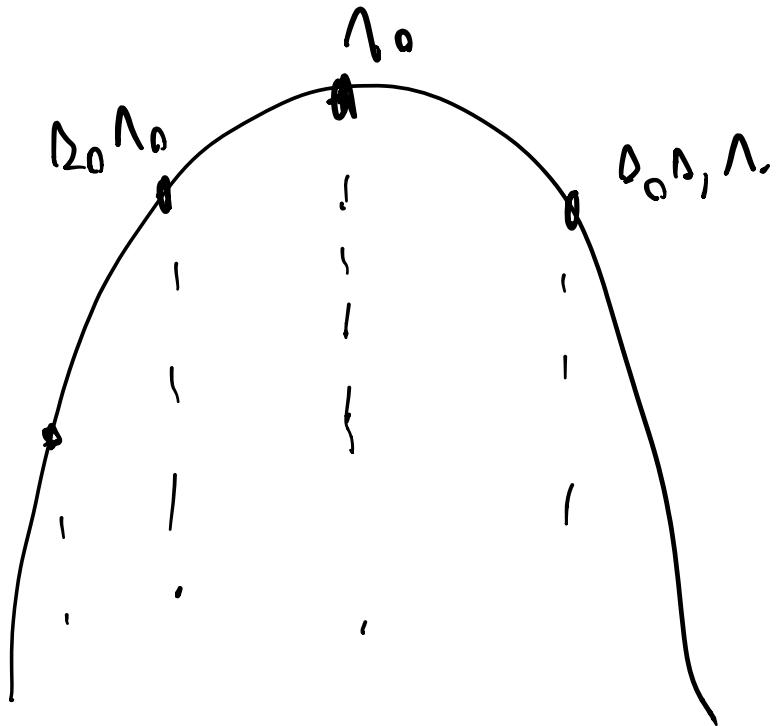
THREE SOURCES OF MODULARITY:

Δ is MODULAR.

$(\mathbb{H})_{w(\lambda)}$ is MODULAR BUT IT

CAN BE FACTORED INTO A SERIES

OF STRING FUNCTIONS AND SUM
OVER THE WEAZL GROUP.



ON THURSDAY WE WILL LOOK
AT THIS MORE CLOSELY.