

KAC-WEYL CHARACTER FORMULA

PROTOTYPE FOR KAC' PROOF WAS BY

BERNSTEIN - GELFAND - GELFAND (1960's)

WHO PROVED THE CLASSICAL WCF FOR
SEMINSIMPLE LIE ALGEBRAS BY CATEGORICAL
METHODS:

FIND PRIMITIVE VECTORS IN $M(\lambda)$

$\lambda \in P^+$ (DOMINANT WEIGHTS).

"DAR" ACTION OF W ON P (WEIGHT LATTICE)

$$P = \{ \lambda \in \mathfrak{h}^* \mid \langle \alpha_i^\vee, \lambda \rangle \in \mathbb{Z} \}$$

$$P^+ = \{ \dots | \dots \in N \} \quad N = \{0, 1, 2, \dots\}$$

$$\omega \cdot \lambda = \omega(\lambda + \rho) - \rho$$

SO THE FIXED POINT OF THE ACTION IS

Moved TO $-\rho$.

THE KEY THING TO SHOW IS THAT THE
WEIGHTS OF THE PRIMITIVE VECTORS ARE

$$\omega \cdot \lambda \quad (\omega \in W)$$

$$\begin{aligned} \alpha_i \cdot \lambda &= \alpha_i(\lambda + \rho) - \rho = \alpha_i \lambda + \underbrace{\alpha_i \rho - \rho}_{-\alpha_i} \\ &= (1, 3, 0) - (1, -1, 0) = (0, 4, 0) \end{aligned}$$

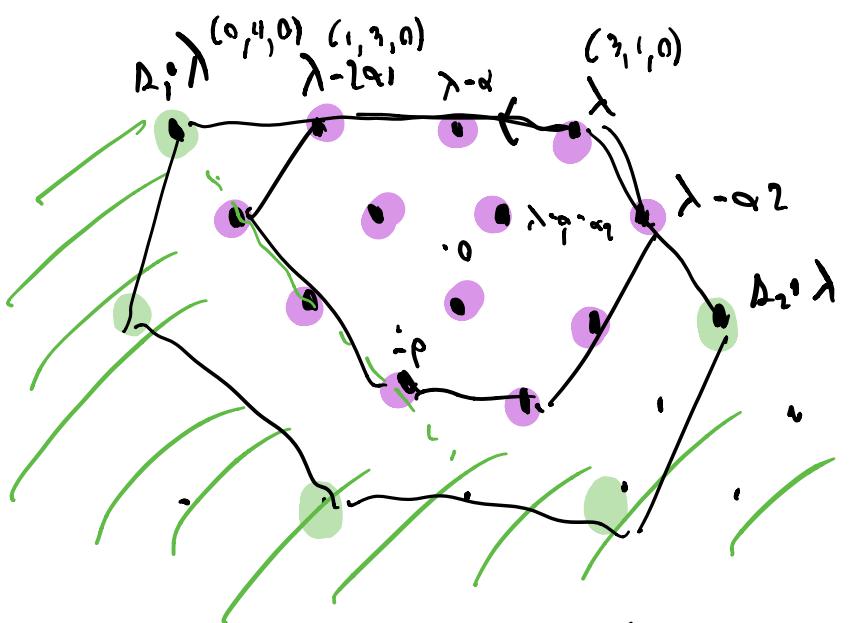
$$\lambda = (3, 1, 0) \text{ for } \Delta \mathfrak{sl}(3)$$

$$\rho = \alpha_1 + \alpha_2$$

● = WEIGHTS OF $L(\lambda)$

• = VERMA WEIGHT.

○ = WEIGHTS OF P.V. (EXCLUDE λ)



$$L(\lambda) = M(\lambda) / \text{SUBMODULE GEN'D BY P.V. WITH WEIGHTS } \omega \cdot \lambda \quad (\omega = 1)$$

}

MAX' L PROPER SUBMODULE

WE HAVE SAME INFORMATION:

PROPOSITION: IF μ IS A PRIMITIVE WEIGHT
THEN $|\mu + \rho| = |\lambda + \rho|$ WHERE $|\mu| = (\mu | \mu)^{1/2}$.

$(,)$ = INVARIANT INNER PRODUCT ON \mathfrak{g}^* .

PROOF: $\Omega = \text{CASIMIR ELEMENT ACT}$

BY A SCALAR ON $M(\lambda)$:

$$(\lambda | \lambda + 2\rho) \quad r: f \rightarrow f^* \rightarrow \rho$$
$$\Omega = \sum_{\alpha \in \Delta^+} \sum_{j=1}^{\dim \mathbb{X}_\alpha} x_{-\alpha}^j x_\alpha^j + \gamma^{-1}(\rho) + \sum_{H \in \text{BASIS OF } f} H^* H.$$

x^j BASIC
OF \mathbb{X}_α .

H : BASIS OF f
 H^* : DUAL BASIS

APPLYING Ω TO v_λ , FIRST PART

$[x_{-\alpha}^j x_\alpha^j]$ ANNIHILATES IT. CALCULATED

$\sum_{H \in H^*}$ PRODUCES $(\lambda | \lambda)$

$\gamma^{-1}(\rho)$ PRODUCES $(\lambda | 2\rho)$.

$M(\lambda)$ HAS A SUBQUOTIENT THAT IS A
HW MODULE WITH HIGHEST WEIGHT μ .

$$(\lambda | \lambda + 2\rho) = (\lambda | \mu + 2\rho)$$

$$(\lambda | \lambda + 2\rho) = |\lambda + \rho|^2 - |\rho|^2 \text{ so}$$

$$|\lambda + \rho|^2 - |\rho|^2 = (\mu + \rho)^2 - |\rho|^2.$$

QED

$$\text{NOTE } |\omega \cdot \lambda + \rho|^2 = |\lambda + \rho|^2$$

$$\omega \cdot \lambda = \omega(\lambda + \rho) - \rho$$

Since ω action is ISOMETRIC.

THIS FACT IS CONSISTENT WITH OUR CLAIM.

A CLOSER LOOK AT ω ACTION ON ROOTS.

PROPOSITION: LET α_i BE A SIMPLE ROOT, α_i SIMPLE REFLECTION. THEN IF α IS A POSITIVE ROOT $\alpha \neq \alpha_i$ THEN $\Delta_i(\alpha) \in \Delta^+$.

PROVED THIS LAST WEEK. REASON IS EASY.

α APPEARS IN n_+ OR n_- . AND

n_+ IS GENERATED BY ℓ_1, \dots, ℓ_r -

$n_+ \hookrightarrow U(n_+)$ THE POSSIBLE WEIGHTS ARE

ALL OF THE FORM $\alpha_1^{n_1} \dots \alpha_r^{n_r}$

$U(n_+)$ HAS A LDW BASIS $e_1^{n_1} \dots e_r^{n_r}$.

SO $\alpha = \sum k_i \alpha_i$. IF $\alpha \neq \alpha_i$ SOME

$k_j \neq 0$ WITH $j \neq i$. (STEMS FROM)

AND ALL $k_j \geq 0$ $[e_i, e_i] = 0$.

SIMILARLY WEIGHTS OF W MAKE ALL

$\alpha_j \leq 0$. \Rightarrow

$$\Delta_i(\alpha) = \alpha - \langle \alpha_i^\vee, \alpha \rangle \alpha_i^\vee$$

HAS ALL α_j SAME AS α EXCEPT α_i .

ONE OF THESE WEIGHTS IS POSITIVE

SO THEY ARE ALL NONNEGATIVE.

$\Delta_i(\alpha)$ IS A WEIGHT OF W , NOT BY W .

$\Delta_i(\rho) = \rho - \alpha_i$ THIS WOULD BE

CLEAR IF α_i IS FINITE DIML. SINCE

$$\rho = \frac{1}{2} \alpha_i^\vee + \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha \xrightarrow{\Delta_i^\vee} -\frac{1}{2} \alpha_i^\vee + \frac{1}{2} \sum_{\alpha \neq \alpha_i^\vee} \alpha$$

$$\Delta_i \text{ permutes}$$

IN KM CASE ρ IS DEFINED BY

$$\langle \alpha_i^\vee, \rho \rangle = 1 \quad \text{so} \quad \Delta_i(\rho) = \rho - \langle \alpha_i^\vee, \rho \rangle \alpha_i^\vee = \rho - \alpha_i^\vee.$$

LENGTH FUNCTION ON W .

IF $w \in W$ DEFINE

$$l(w) = \left| \left\{ \alpha \in \Delta^+ \mid w(\alpha) \in \Delta^+ \right\} \right|.$$

NOTE $\alpha \rightarrow -w(\alpha)$ IS A BIJECTION

$$\left\{ \alpha \in \Delta^+ \mid w(\alpha) \in \Delta^+ \right\} \rightarrow \left\{ \alpha \in \Delta^+ \mid w^{-1}(\alpha) \in \Delta^+ \right\}$$

$$\text{so } l(w) = l(w^{-1}).$$

GOAL:

IF $w = \Delta_1 \cdots \Delta_m$, THIS IS

CALLED REDUCED EXPRESSION IF $l(w)$ IS

MINIMAL.

THEOREM: THE LENGTH $l(w)$ IN A REDUCED EXPRESSION IS $l(w)$.

PROPOSITION: LET $\Delta = \Delta_n$ BE A SIMPLE REFLECTION

$$l(w\sigma_i) = l(w) + 1 \text{ IF } w(\sigma_i) \in \Delta^+$$

$$= l(w) - 1 \text{ IF } w(\sigma_i) \in \Delta^-.$$

ASSUME $w(\alpha) \in \Delta^+$. THEN I CLAIM

$$\begin{aligned} & \sqrt{\left\{\alpha \in \Delta^+ \mid (w\alpha)^+ (\alpha) \in \Delta^-\right\}} : \\ & \sqrt{\left\{\alpha \in \Delta^+ \mid w^+(\alpha) \in \Delta^-\right\}} \cup w(\alpha_i) . \end{aligned}$$

LET ME SHOW LHS \subseteq RHS. OTHER
INCLUSION EASY.

IF $\alpha \in \Delta^+$ AND $(w\alpha)^+(\alpha) \in \Delta^-$ AND
 $w^+(\alpha) \in \Delta^+$ THEN I CLAIM $w^+(\alpha) = \alpha_i$.

INDGED $(w\alpha)^+(\alpha) = \Delta_i(w^+(\alpha)) \in \Delta^-$.

AND α_i IS THE ONLY POSITIVE ROOT IT

COULD BE \Rightarrow LHS \subseteq RHS.

$w(\alpha) \in \Delta^+ \Rightarrow \ell(w\alpha) = \ell(w) + 1$.

DEDUCE SECOND PART SO ASSUME $w(\alpha) \in \Delta^-$.

LET $w' = w\alpha$ THEN $w'(\alpha_i) = w(\Delta_i\alpha_i) - w(\alpha_i) \in \Delta^+$

WE CAN APPLY FIRST PART TO w' AND

SEE $\ell(w) = \ell(w'\alpha) = \ell(w'\alpha) + 1$, THIS CASE
IS DONE TOO.

PROPOSITION: LET $\Delta = \Delta_+$ BE A SIMPLE REFLECTION
 $l(w\Delta) = l(w) + 1$ IF $w(\alpha) \in \Delta^+$
 $= l(w) - 1$ IF $w(\alpha) \in \Delta^-$.

THEOREM: THE LENGTH l_2 IN A REDUCED
 EXPRESSION IS $l(w)$.

PROP. IMPLIES IF $w = \Delta_{i_1} \cdots \Delta_{i_k}$
 $l(w) \leq l_2$. TRUE BY INDUCTION.

CONVERSE IF $\Delta_{i_1} \cdots \Delta_{i_k}$ IS REDUCED.

LET US PROVE

PROPOSITION: IF $\underbrace{l(\Delta_{i_1} \cdots \Delta_{i_k})}_{w} \leq l_2$

THEN

$w = \Delta_{i_1} \cdots \overset{\wedge}{\Delta_{i_m}} \cdots \overset{\wedge}{\Delta_{i_n}} \cdots \Delta_{i_k}$
 OMIT TWO FACTORS

LET m BE THE FIRST INTEGER

SUCH THAT $y^m \overset{y^{-1}}{\mid}$

$$l(\Delta_{i_1} \cdots \underbrace{\Delta_{i_m}}_{\Delta_{i_m}}) = l(\Delta_{i_1} \cdots \Delta_{i_n}) \leq h - m + 1$$

$$l(\Delta_{i_{m+1}} \cdots \Delta_{i_n}) = h - m$$

BY THE PROPOSITION

$$(\Delta_{i_{m+1}} \cdots \Delta_{i_n})^{-1} (\alpha_{i_m}) \in \Delta^+$$

$$\beta^{-1} (\alpha_{i_m})$$

PROPOSITION: LET $\Delta = \Delta_n$ BE A SIMPLE REFLECTION

$$l(w\Delta) = l(w) + 1 \text{ IF } w(\alpha) \in \Delta^+$$

$$= l(w) - 1 \text{ IF } w(\alpha) \in \Delta^-.$$

THEN THERE IS A SMALLEST $\underbrace{n \in \mathbb{N}}_{\text{such that}}$ $\underbrace{\alpha_{i_m}}_{\alpha_{i_m}}$

$$\text{SUCH THAT } (\Delta_{i_{m+1}} \cdots \Delta_{i_{n-1}})(\alpha_{i_m}) \in \Delta^+$$

$$\text{AND } (\Delta_{i_{m+1}} \cdots \Delta_{i_n})^{-1} (\alpha_{i_m}) \in \Delta.$$

$$\Delta_i(\beta)$$

$$\text{SO } \beta \in \Delta^+, \Delta_i(\beta) \in \Delta^- \Rightarrow \beta = \alpha_{i_m}$$

RECAP: $(\Delta_{i_{m+1}} \cdots \Delta_{i_n})^{-1}(\alpha_{i_m}) = \alpha_{i_n}$.

LEMMA: IF α_i, α_j ARE SIMPLE

AND $w(\alpha_i) = \alpha_j$ THEN $w\Delta_i w^{-1} = \Delta_j$.

PROOF

$$\begin{aligned}
 (w\Delta_i w^{-1})(x) &= w\Delta_i(w^{-1}(x)) \\
 &= w\left(w^{-1}(x) - \langle \alpha_i^\vee, w^{-1}(x) \rangle \alpha_i\right) \\
 &= w\left(w^{-1}(x) - \langle w(\alpha_i^\vee), x \rangle \alpha_i\right) \\
 &= x - \langle \alpha_j^\vee, x \rangle \alpha_j \quad \Delta_i(\alpha_i) = \alpha_j.
 \end{aligned}$$

$$\text{SO } (\Delta_{i_{m+1}} \cdots \Delta_{i_n}) \Delta_{i_m} (\Delta_{i_{m+1}} \cdots \Delta_{i_n})^{-1} = \Delta_{i_m}.$$

THIS IMPLIES

$$\Delta_{i_m} \cdots \Delta_{i_n} = \hat{\Delta}_{i_m} \Delta_{i_{m+1}} \cdots \hat{\Delta}_{i_{n-1}} \Delta_{i_n}.$$

$$\text{SO } \Delta_{i_1} \cdots \Delta_{i_m} = \Delta_{i_1} \cdots \hat{\Delta}_{i_m} \cdots \hat{\Delta}_{i_n} \cdots \Delta_{i_n}.$$

THIS MEANS IF $l(\alpha_1 \dots \alpha_n) < \ell_2$
 THE EXPRESSION IS NOT REDUCED AND
 IF I DISCARD TERMS IN PAIRS UNTIL
 I OBTAIN A REDUCED EXPRESSION I GET
 THIS OTHER INEQUALITY SO

$l(w) = \text{LENGTH OF A REDUCED EXPRESSION.}$

THEOREM (EXERCISE 10.3 IN KAC)

$M(0)$ HAS PRIMITIVE VECTORS OF
 WEIGHT $-w \cdot p = p - w(p)$ FOR ALL
 $w \in W$.

WE SEE IN KM CASE $M(0)$ CAN HAVE
 INFINITELY MANY PRIMITIVE.

(VERMA MODULES CAN HAVE ∞ LENGTH!)

$$f_j = \mathbb{R}^3 / \mathbb{R}(1,1,1)$$

$$(3, 1, 0) = (3, 1, 0) \cdot \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$$

$$\left(\frac{2}{3}, -\frac{1}{3}, -\frac{4}{3}\right)$$

$$-\rho = (-1, 0, 1)$$

$$(2, 1, 0) \quad (3, 1, 0)$$

$$(2, 1, 1)$$

$$(1, 1, 1) \quad \cdot (1, 1, 1)$$