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March 27, 2022

This year Math 210C will approach Lie theory through Lie algebras. Here are some basic
references.

[H] J. Humphreys, Introduction to Lie Algebras and Representation Theory ;
[B] Bump, Lie groups , Second edition;
[K] Kac, Infinite-dimensional Lie algebras , Third Edition.

This year we will read [H], treating [B] and [K] as supplementary references. All of these
references can be found on-line through the Stanford libraries. Thus our emphasis will be
on the Lie algebra approach.

However we do not wish to completely ignore Lie groups so in these notes we will review
the relationship between Lie groups and Lie algebras. In Section 1 we will give some reasons
for starting one’s study of Lie theory with Lie algebras instead of Lie groups. In Sections
2–6 we will define the Lie algebra of a Lie group. Fuller details can be found in [B], Chapters
5–8.

1 Lie groups versus Lie algebras

A Lie algebra over a field F is a vector space L with a bilinear map µ : L×L −→ L called the
bracket operation. We use the notation [x, y] instead of µ(x, y) for x, y ∈ L. The operation
is assumed to be skew-symmetric:

[x, y] = −[y, x]

and to satisfy the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Lie algebras have many features in common with groups or rings, in particular a rich repre-
sentation theory.

On the other hand a Lie group is a group G that is also a smooth manifold, such that the
group operations (multiplication and the inverse map) are smooth mappings. Understanding
the representation of G is the most important problem in this topic.
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It turns out that we may associate with a Lie group G a Lie algebra g, and every represen-
tation of G gives rise to a representation of g. The most important results in representation
theory, such as the Weyl character formula can be formulated as results about either the
representation theory of G, or of g. However the methods of proof that are available for
representations of G differ from those available for g.

Consider the Weyl character formula. Assume that G and g are semisimple or (slightly
more generally) reductive. There is an explicit set of data, called dominant weights , that
parametrize the irreducible finite dimensional representations of G, or of g. If λ is a dominant
weight, there is a concrete vector space Vλ with a representation of G, and therefore also of
g. These are precisely the irreducible representations. The Weyl character formula describes
the character of this representation. Once we know the character we can answer questions
such as how Vλ⊗ Vµ decomposes into irreducibles, or how Vλ decomposes when restricted to
a subgroup of G, or a subalgebra of g.

Now the methods of proof for the Weyl character formula differ, whether we approach
this as a result about G or about g. For the Lie group approach, we make use of integration
theory and the proof is therefore somewhat analytic. But for the Lie algebra approach, we
use purely algebraic tools, an important one being the Casimir operator which acts as a
scalar on Vλ.

There is one obvious reason for preferring a Lie group approach: it is closer to our
intuition. For example, the definition of a Lie group is well-motivated and examples present
themselves in many problems from physics to number theory. By contrast, the definition
of a Lie algebra is not so obviously a good one, and the first reason for caring about the
representation theory of Lie algebras is the applicability of the results to Lie groups.

However there are a number of reasons to prefer a Lie algebra approach. First, many
problems are linearized and therefore made simpler. For example, if V is a module over G,
an invariant bilinear form is a bilinear map β : V × V −→ C that satisfies

β(gv, gw) = β(v, w) (1)

for v, w ∈ V and g ∈ G. This is obviously the right definition of an important concept. Yet
it is a little hard to work with. For example, for each g ∈ G, the relation (1) is quadratic,
and there is one equation for every g ∈ G. To produce a such a form we might not want to
directly solve these equations; instead we would try to prove the existence of such a form by
integration and then deduce its properties.

By contrast, regarding V as a module over g, the condition that β must satisfy to be
invariant in the Lie algebra sense is

β(Xv,w) + β(v,Xw) = 0 (2)

for all X ∈ g. This identity is linear and therefore easier to work with than the bilinear
relation (1). Moreover it is sufficient to check (2) for X in a basis of the finite-dimensional
Lie algebra g.

Thus the Lie algebra theory is simpler, because it is purely algebraic and more linear
than the representation theory of G. But there are other reasons to prefer the Lie algebra
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approach. There are several kinds of generalizations of the Weyl theory that have become
important since the 1970’s. These include:

• Infinite-dimensional Kac-Moody Lie algebras;

• Lie superalgebras;

• Quantum groups.

These are all contexts where there are generalizations of the Weyl Character formula, but
which require a Lie algebra approach, since the group approach does not work well. There are
other important Lie algebras that are not associated with Lie groups, such as the infinite-
dimensional Virasoro Lie algebra. And these are all theories that arise in practice, for
example in mathematical physics and algebraic combinatorics. They are at the center of a
lot of important mathematics. So it seems that in approaching representation theory, it is
best not to be too tied to Lie groups.

Another reason for preferring the Lie algebra approach is that although every represen-
tation of G gives rise to a representation of g, not every representation of g comes from
a representation of G. The ones that do are called integrable. Even if one is only inter-
ested in the integrable representations, it is useful to embed them in a larger category, the
Bernstein-Gelfand-Gelfand Category O. This fruitful idea requires abandoning the Lie group
and instead working with g.

2 The Lie algebra of vector fields on a manifold

If M is a smooth manifold, a vector field X is a smooth section of the tangent bundle. Now let
U be an open subset of M , and x1, · · · , xn a set of local coordinates on U , where n = dim(M).
By this we mean that xi are functions U −→ R and the map u 7→ (x1(u), · · · , xn(u)) is a
diffeomorphism U −→ φ(U) ⊆ Rn. Then ∂

∂xi
are a basis of the tangent space Tu(M) for

u ∈ U . Thus we may write the vector field on U as

X =
n∑
i=1

ai(u)
∂

∂xi
(3)

where ai are smooth functions on U .
There are two things we can do with a vector field.

• If u0 ∈M we may construct an integral curve through u0 tangent to X.

• We may differentiate smooth functions along X.

For the first point, we ask for a smooth map u : (−ε, ε) −→ M such that u(0) = u0 such
that the tangent to the curve at t ∈ (−ε, ε) is X(ut). Concretely, this means that

dut
dt

= (a1(ut), · · · , an(ut)).
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This is a first order system of differential equations, and a solution is guaranteed for small
ε > 0. Potentially ε depends on u0 but its value would be bounded below on any compact
set.

For the second point, note that (3) defines a differential operator that we may apply to a
function f in the space C∞(M) = C∞(M,R) of smooth real valued functions on M . Another
way to think of this is that to compute Xf(u0) we differentiate f(ut) along the path tangent
to the vector field at u0 and set t = 0. From the Leibnitz rule X : C∞(M) −→ C∞(M) is a
derivation, that is, it satisfies X(f1f2) = X(f1)f2 + f1X(f2).

Proposition 1. Let D be any derivation of the ring C∞(M). Then there is a unique vector
field X such that Df = X(f) for f ∈ C∞(M).

Proof. See [B], Proposition 6.3.

Now we may define a Lie algebra structure on the space of vector fields on M . Let
A be any algebra, by which we mean a vector space equipped with a bilinear map A ×
A −→ A, which we interpret as multiplication. We do not require A to be associative.
Let Der(A) be the space of derivations, meaning linear maps D : A −→ A that satisfy
D(fg) = D(f)g + gD(f). It is easy to check that if D1, D2 are derivations then so is
[D1, D2] = D1 ◦ D2 − D2 ◦ D1. Moreover this bracket operation is skew-symmetric and
satisfies the Jacobi relation, so Der(A) is a Lie algebra.

Now we have interpreted the space of vector fields as Der(A) where A = C∞(M). Thus
it has the structure of a Lie algebra. It is, of course, infinite-dimensional.

3 The Lie algebra of a Lie group

Now suppose that G is a Lie group, that is, a manifold with a group structure such that the
multiplication G × G −→ G and the inverse map G −→ G are smooth mappings. G acts
on itself by left translations, hence it acts on vector fields. To make this explicit, G acts on
C∞(G) by (λ(g)f)(x) = f(g−1x) for g, x ∈ G and f ∈ C∞(G). So if X is a vector field,
there is another vector field gX defined by (gX)(f) = λ(g−1)Xλ(g)f . The vector field is
left-invariant if gX = X for g ∈ G. Let g be the space of left-invariant vector fields. Then
g is closed under the bracket operation defined on vector fields, hence is a Lie algebra. We
will also denote g = Lie(G). This is the Lie algebra of G.

If X is a vector field, let X1 ∈ T1(G) be the tangent vector at the identity element 1 ∈ G.

Proposition 2. Let Z ∈ T1(G). Then there exists a unique left invariant vector field X
such that X1 = Z.

Proof. If g ∈ G, then a left invariant vector field X must satisfy Xg = gX1, so X is
determined by X1. Conversely, if Z is given, and if we define a vector field X by Xg = gZ,
this vector field is left invariant.

Corollary 1. If G is an n-dimensional Lie group then its Lie algebra is an n-dimensional
vector space.

Proof. This is clear since by Proposition 2 g ∼= T1(G), which is n-dimensional.
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4 The exponential map

Let g = Lie(G). We now discuss the exponential map g −→ G.
By a one-parameter subgroup we mean a smooth homomorphism R −→ G.

Theorem 1. There exists a map exp : g −→ G such that if X ∈ g then

t 7→ eX(t) := exp(tX)

is the integral curve through 1G tangent to the vector field X. The map eX : R −→ G is a
one-parameter subgroup.

Proof. See Bump [B], Theorem 8.1. We will quickly recall the idea. If X ∈ g let t 7→ eX(t)
be the integral curve tangent to the vector field X with eX(0) = 1. Initially we know that
eX(t) is defined for t in an interval (−ε, ε) with ε > 0. We claim that

eX(t+ u) = eX(t)eX(u). (4)

if t and u are sufficiently small, more precisely if t, u, t + u ∈ (−ε, ε). To see this, note that
since X is invariant under left translation we see that t 7→ geX(t) is also an integral curve
for the vector field X. Therefore u 7→ eX(t)−1eX(t+ u) is also an integral curve taking 0 to
1G. From the uniqueness of the integral curve we have eX(u) = eX(t)−1eX(t+ u).

Now we may widen the interval (−ε, ε) to
(
−3ε

2
, 3ε

2

)
by defining

eX(y) =

{
eX
(
ε
2

)
eX
(
y − ε

2

)
if y ∈

(
− ε

2
, 3ε

2

)
,

eX
(
− ε

2

)
eX
(
y + ε

2

)
if y ∈

(
−3ε

2
, ε
2

)
.

It may be checked using (4) that the two descriptions are consistent on the region of overlap(
− ε

2
, ε
2

)
, and agrees with the original eX on (−ε, ε), and (4) remains true if t, u, t+ u are in(

−3ε
2
, 3ε

2

)
. Repeating this process, we eventually get eX defined for all R.

Now that the one-parameter subgroups eX are constructed, we define exp(X) = eX(1).
It remains to be shown that exp(tX) = eX(t). To this end, we note that u 7→ eX(tu) is the
integral curve tangent to the vector field tX so eX(tu) = etX(u). Taking u = 1 we obtain
eX(t) = exp(tX).

5 The group GLn(C)
Let G = GLn(C). Since G is an open subspace of Matn(C), an affine n2-dimensional space,
the tangent space T1(G) to G at the identity with Matn(C). In this identification, the matrix
X corresponds to the tangent vector tangent to the path t 7→ I + tX. But this is the same
as the path t→ etX where

etX = I + tX +
1

2
t2X2 +

1

6
t3X3 + . . . ,
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which has the benefit of being a 1-parameter subgroup. Therefore eX(t) = etX and taking
t = 1 we see that the exponential map exp is the usual matrix exponential:

exp(X) = I +X +
1

2
X2 +

1

6
X3 + . . . .

Recall that the Lie algebra g of G is the Lie algebra of left-invariant vector fields, which
is isomorphic to T1(G) as a vector space. We will therefore identify the Lie algebra of G
with Matn(C).

Proposition 3. Let X ∈ Matn(C). If f ∈ C∞(GL(n,C)) then

Xf(g) =
d

dt
f(g exp(tX))|t=0.

Proof. The path t 7→ exp(tX) is tangent to the vector field X at the identity when t = 0.
Since the vector field is invariant under left translation, the path t 7→ g exp(tX) is tangent
to the vector field at g when t = 0. So to evaluate Xf(g), we differentiate along this path
and set t = 0.

If R is any associative algebra, it is easy to see that R has the structure of a Lie algebra
with bracket operation [x, y] = xy−yx. Let Lie(R) be the Lie algebra with underlying space
R, and this operation. We will now show that the Lie algebra of GLn(C) is Lie(Matn(C)).

Theorem 2. The Lie algebra of GLn(C) is isomorphic to Matn(C), with the Lie bracket
operation [X, Y ] = XY − Y X, where XY is ordinary matrix multiplication.

Proof. Let X ∈ Matn(C), and let f be a smooth function on GLn(C). Let us write the
Taylor expansion:

f(g(I +X)) = f(g) + φ(X) +B(X,X) + · · ·

where φ is a linear map Matn(C) −→ C and B(X, Y ) is a symmetric bilinear form. We have

Xf(g) =
d

dt
(f(g) + tφ(X) + t2B(X,X) + . . .)|t=0 = φ(X). (5)

Now let us compute

XY (f) =
d

dt

d

du
f(getXeuY )|t=u=0.

We have

etXeuY = I + tX + uY +
1

2
(t2X2 + 2tuXY + u2Y 2) + · · · .

Thus

f(getXeuY ) = f(g) + φ

(
tX + uY +

1

2
(t2X2 + 2tuXY + u2Y 2)

)
+

B(tX + uY, tX + uY ) + · · ·
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Therefore

(XY f)(g) =
d

dt

d

du
f(getXeuY )|t=u=0 = φ(XY ) + 2B(X, Y ).

Consequently

XY f(g)− Y Xf(g) = φ(XY − Y X) = (XY − Y X)f(g)

where we have used (5). This proves that [X, Y ] = XY − Y X, were we are using ordinary
matrix multiplication.
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