
The Weyl Character Formula

Although we are mostly following Humphrey’s book, in the later chapters a simplification
is possible. The most important theorem in Lie theory is undoubtedly the Weyl Charac-
ter formula for the character of an irreducible representation, which is Theorem 24.3 in
Humphreys. In these notes we will explain Kac’s proof of the Weyl character formula.

The proof in Humphreys follows an argument due to Bernstein, Gelfand and Gelfand
(1971). Humphrey’s book came out in 1972. In 1974, Victor Kac found a simplification of the
BGG proof which appears in Chapter 10 of his book Infinite-dimensional Lie algebras. This
proof was not available to Humphreys, who (following BGG) relied on a result of Harish-
Chandra on the center Z = Z(U(g)) of the universal enveloping algebra. Kac’ argument
avoids the theorem of Harish-Chandra in place of a clever argument using only a single
element of Z, the Casimir element.

We will slightly change the notation and terminology from Humphreys; as he notes in
the Afterward to the 1994 edition, his δ is universally denoted ρ, and the terminology and
notation for Verma modules differs from his usage. We will follow currently standard notation
and terminology on these points.

1 Notation

Let g be a semisimple Lie algebra, h a maximal toral subalgebra, Φ ⊂ h∗ the root system,
which we partition into positive and negative roots. The Killing form κ restricted to h is
nondegenerate by Humphreys Corollary 8.2. As in Section 8.2 we will associate to φ ∈ h∗ an
element tφ ∈ h such that

κ(tφ, h) = φ(h) for h ∈ h. (1)

Then we will define an inner product on h∗ which we will denote

(λ|µ) = κ(tλ, tµ). (2)

If α ∈ Φ we will denote by gα the root eigenspace

{x ∈ g|[h, x] = α(h)x for h ∈ h} .

As in Proposition 8.3 (g) of Humphreys we will denote by

hα =
2tα

(α|α)
. (3)
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Thus if xα ∈ gα we have [hα, xα] = 2xα. If

α∨ =
2α

(α|α)

then for λ ∈ h∗ we have (α∨|λ) = λ(hα). Either α∨ or hα is called a coroot . They are really
the same thing if we identify h with its double dual h∗∗.

We will denote by ρ half the sum of the positive roots. Humphreys denotes this δ, but the
notation ρ is now universally used by everyone. If α ∈ Φ we will denote by rα the reflection

rα(x) = x− (x|α∨)α.

If α is a simple root, we will also use the notation sα for rα. We have proved that sα maps α
to its negative and permutes the remaining positive roots. Therefore sα(ρ) = ρ− α and so

(ρ|α∨) = 1 (4)

for all simple roots α.
An element λ of h∗ is called an integral weight if (λ|α∨) ∈ Z for all α ∈ Φ+, or equivalently,

for all simple roots α. The integral weights form a lattice

Λ =
{
x ∈ V |(α∨|x) ∈ Z for α ∈ Φ+

}
,

called the weight lattice. We call λ ∈ h∗ dominant if (λ|α∨) > 0 for all α ∈ Φ+ (or
equivalently for simple roots α). We call λ strongly dominant if (λ|α∨) > 0. Thus by (4),
the Weyl vector ρ is a strongly dominant integral weight.

Here are a couple of important properties of the Weyl group action. Let V be the R-span
of Φ in h∗. The inner product ( | ) makes V into a Euclidean space, and h∗ = V + iV . The
set

C+ =
{
x ∈ V |(α∨|x) > 0 for α ∈ Φ+

}
is called the positive Weyl chamber . Thus the dominant weights are the ones in C+.

Proposition 1. The positive Weyl chamber is a fundamental domain for the action of the
Weyl group: if x ∈ V there is a unique element of C+ in the W orbit of x.

Proof. See Bump, Lie Groups, Second edition, Proposition 20.11.

Proposition 2. Let λ be a dominant, integral weight and let w ∈ W . Then λ < wλ.

Proof. See Bump, Lie Groups, Second edition, Proposition 22.3.

2 Highest weight modules

Even though our real interest is in finite-dimensional modules, we will consider modules that
are not necessarily finite-dimensional.

Let V be a g-module. For λ ∈ h∗ we denote the weight space

Vλ = {v ∈ V |h · v ∈ λ(h)v for h ∈ h} .

We will say that V is h-diagonalizable if V is the algebraic direct sum of the Vλ.
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Proposition 3. If V is h-diagonalizable, then so is any submodule or quotient module.

Kac. Let U ⊆ V be an submodule. We must show that an element of U may be expressed
as a finite linear sum of uλ ∈ Uλ. Since V has a weight space decomposition, we may write
u as a sum of uλ ∈ Vλ, and the problem is then to show that uλ ∈ U . There exist a finite
number of λi such that

u =
m∑
i=1

uλi ,

and we choose h ∈ h such that the values λi(h) are all distinct. Then for j = 0, · · · ,m− 1

hj · u =
∑

λi(h)j uλi ∈ h.

The m×m matrix {λi(h)j} is invertible since its determinant is a Vandermonde determinant.
Applying the inverse to this shows that each uλi ∈ U , as required.

This proves that a submodule of a h-diagonalizable module is diagonalizable. It follows
that the same is true for quotient modules, with (V/U)λ = Vλ/Uλ.

We will work exclusively with diagonalizable modules with dim(Vλ) < ∞ for all λ ∈ h∗.
We will define the support supp(V ) = {λ ∈ h∗|Vλ 6= 0}.

Let U(g) be the universal enveloping algebra. Let n+ be the nilpotent subalgebra of
g generated by the gα (α ∈ Φ+), and let n− be the subalgebra generated by the gα with
α ∈ Φ−. Then clearly we have the triangular decomposition

g = n− ⊕ h⊕ n+.

Lemma 1. We have U(g) ∼= U(n−)⊗U(h)⊗U(n−) in the sense that the multiplication map

U(n−)× U(h)× U(n+) −→ U(g)

induces a vector space isomorphism U(n−)⊗ U(h)⊗ U(n+) −→ U(g).

Proof. This follows from the Poincaré-Birkhoff-Witt theorem (PBW) together with the tri-
angular decomposition (2). Namely, if {xi} is a basis for g, then PBW asserts that a basis
for U(g) consists of all elements of the form

xk11 · · ·x
kd
d , 0 6 xi ∈ Z.

Now we take the basis in a particular way, where its first 1
2
|Φ| elements are a basis for n−,

the next ` elements are a basis for h, and the last 1
2
|Φ| elements are a basis for n+. Then the

element xk11 · · ·x
kd
d factors uniquely as a product abc where a runs through a basis of n−, b

runs through a basis of h and c runs through a basis of n+.
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We will call a vector v ∈ V a highest weight vector of weight λ if v ∈ Vλ and if xαv = 0
for α ∈ Φ+. (Humphreys calls such v a maximal vector .) We will call V a highest weight
module of weight λ if it is generated by a highest weight vector v ∈ Vλ. (Humphreys calls a
highest weight module a standard cyclic module.)

We recall the partial order < on h∗ introduced in Section 20.2 (page 108) of Humphreys:
we write λ < µ if λ− µ can be expressed as a sum of positive roots; that is

λ− µ =
∑
α∈Φ+

kαα, kα ∈ N.

(Here N = {0, 1, 2, 3, · · · }.)

Proposition 4. Suppose that v ∈ V is a highest weight vector. Then the g-submodule U(g)v
generated by v equals U(n−)v. The weight space Vµ = 0 unless µ 4 λ. We have dim(Vλ) = 1.

Proof. We note that any element of U(n+) may be written as a constant times an element of
the left ideal U(n+)n+; but this ideal annihilates v so U(n+)v = Cv. Similarly U(h)v = Cv
since v ∈ Vλ. By Lemma 1, U(g)v = U(n−)U(h)U(n+)v = U(n−)v.

Consider the basis {x−α} (α ∈ Φ+) of n− with x−α ∈ g−α. Using a fixed order on Φ+,
the elements

∏
α∈Φ+ x

kα
−α are a PBW basis of U(n−). Since x−α maps Vµ to Vµ−α,∏

α∈Φ+

xkα−αv ∈ Vµ, µ = λ−
∑
α∈Φ+

kαα,

so µ 4 λ. Unless all kα = 0, µ is strictly ≺ λ, so Vλ is one-dimensional.

Proposition 5. Let V be a highest weight module with highest weight λ. A submodule U of
V is proper if and only if U ∩ Vλ = 0.

Proof. Since dim(Vλ) = 1, if U ∩ Vλ 6= 0 then Vλ ⊆ U and then since Vλ generates V , it is
clear that U = V . On the other hand if U ∩ Vλ = 0 then clearly U is proper.

Proposition 6. Let V be a highest weight module with highest weight λ. Then V has a
unique maximal proper submodule. Moreover V has a unique irreducible quotient.

Proof. Let Σ be the set of proper submodules of V , and let

W =
∑
U∈Σ

U.

By Proposition 3 each U ∈ Σ is diagonalizable, so evidently for µ ∈ h∗

Wµ =
∑
U∈Σ

Uµ.

We apply this with µ = λ. Since U ∈ Σ is proper, Uλ = 0 by Proposition 5, and so
Wλ = 0. This shows that W is proper. We have proved that W is the unique maximal
proper submodule of V , and consequently V/W is the unique irreducible quotient.
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Theorem 1. Let λ ∈ V ∗. There is a highest weight module M = M(λ) with highest weight
vector m ∈Mλ with the following universal property. If V is another highest weight module
with highest weight λ and if v ∈ Vλ, then there is a unique g-module homomorphism M −→ V
mapping m −→ v. The map ξ 7−→ ξ · v is vector space isomorphism U(n−) −→M .

Proof. Note that since h normalizes n+, b = h ⊕ n+ is a subalgebra of g, the “Borel
subalgebra.” As in Lemma 1, U(g) ∼= U(n−) ⊗ U(b), that is, the multiplication map
U(n−) × U(b) −→ U(g) induces a vector space isomorphism U(n−) ⊗ U(b) → U(g). This
result is a simple consequence of this fact.

To elaborate, regarding C as a one-dimensional abelian Lie algebra, we have a Lie algebra
homomorphism θλ : b −→ C that maps H ∈ h to λ(h), and n+ to zero. Thus let H1, · · · , H`

be a basis of h and xα (α ∈ Φ+) be a basis of n+. By the PBW theorem, the elements

Hk1
1 · · ·H

k`
`

∏
α∈Φ+

xkαα

with ki and kα nonnegative integers are a basis for U(b). It is understood that in the product∏
xkαα the roots α ∈ Φ+ are taken in a fixed definite order. We then have

θλ

(
Hk1

1 · · ·H
k`
`

∏
xkαα

)
=

{ ∏
λ(Hi)

ki if all kα = 0,
0 if any kα > 0.

Now let Jψ be the left ideal generated by ξ − θλ(ξ) for ξ ∈ b. Let M(λ) = U(g)/Jψ, and let
v be the image of 1 ∈ U(g) in M(λ). So M(λ) is a highest weight module with weight λ,
and

It is clear from the PBW theorem that Hv = λ(H)v for H ∈ h, while n+v = 0, and
moreover from U(g) ∼= U(n−)⊗U(b), it is clear that every element of M(λ) may be written
uniquely as η · v for η ∈ U(n−).

Corollary 1. Let λ ∈ h∗. Up to isomorphism, g has a unique irreducible highest weight
module L(λ) with highest weight λ.

Proof. Every highest weight module is a quotient of M(λ). Since by Proposition 6 M(λ)
has a unique irreducible quotient, there is a unique irreducible highest weight module.

Remark 1. See Humphreys, bottom of page 109-110 for his introduction of the module M(λ).
Humphreys denotes this module Z(λ) but the notation M(λ) is now standard. The module
M(λ) is (nowadays) called a Verma module. The notation L(λ) for the unique irreducible
highest weight module is also standard.

Remark 2. The irreducible quotient L(λ) might be finite or infinite dimensional. Recall
that λ is called integral if (α∨|λ) ∈ Z for all coroots α∨, and dominant if (α∨|λ) > 0. If λ is
a dominant integral weight, then L(λ) is finite-dimensional. On the other hand if λ is not
integral, L(λ) will be infinite dimensional, and unless (α∨|λ) ∈ Z for some coroot α∨, we
will actually have M(λ) irreducible, and L(λ) = M(λ).
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Proposition 7. Let V be a finite-dimensional irreducible module. Then V ∼= L(λ) where λ
is a dominant integral weight.

Proof. Choose a vector v ∈ Vλ where λ is a weight of V that is maximal with respect to
<. If α ∈ Φ+ then xαv ∈ Vλ+α so xαv = 0. Therefore v is a highest weight vector. Then
V = U(g)v since V is irreducible. We have proved that V is a highest weight module; it is
irreducible so V ∼= L(λ).

To show that λ is a dominant integral weight, let α be a simple positive root. The
restriction of V to the sl2 spanned by xα, x−α and hα is finite-dimensional, and xαv = 0.
From the classification of finite-dimensional sl2 modules, this means that (α∨|λ) = λ(hα) ∈ Z
is a nonnegative integer. Therefore λ is dominant and integral.

3 The Casimir element

As in Section 22.1 of Humphreys, the Casimir element of the universal enveloping algebra
U(g) may be defined as follows. Let {γi} be a basis of g and {γi} the dual basis with respect
to the Killing form, so κ(γi, γ

i) = δij. Then

c =

dim(g)∑
i=1

γiγ
i

Proposition 8. c is is independent of the choice of basis {γi}. It lies in the center of U(g).

Proof. See Exercise 2 in Section 22.

Proposition 9. Let hi be a basis of h and let hi be the dual basis with respect to the Killing
form, so κ(hi, h

j) = δij. Then if λ, µ ∈ h∗ we have

(λ|µ) =
∑
i

λ(hi)µ(hi).

Proof. First let us show that

tµ =
∑
i

µ(hi)h
i. (5)

To check this, we pair both sides with hj. We have

κ(tµ, hj) = µ(hj) = κ

(∑
i

µ(hi)h
i, hj

)
.

Since the hj span h and κ restricted to h is nondegenerate, this proves (5).
Now (5) implies

(λ|µ) = κ(tλ, tµ) =
∑
i

µ(hi)κ(tλ, h
i) =

∑
i

µ(hi)λ(hi).
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Proposition 10. Let V be a highest weight module with highest weight λ. Then the Casimir
element c acts by the scalar

|λ+ ρ|2 − |ρ|2

on V .

Proof. Since c is central in U(g) it commutes with the action of g on any module. Because
V is generated by a highest weight vector v ∈ Vλ it is sufficient to show that

cv = (|λ+ ρ|2 − |ρ|2)v.

Also as in Humphreys Proposition 8.4 (b), for α ∈ Φ+ let xα ∈ gα and x−α ∈ g−α be chosen
so that [xα, x−α] = hα, where hα are the coroots defined in (3). Now with α ∈ Φ+ we will
show that

κ(xα, x−α) =
2

(α|α)
. (6)

First note that
[tα, xα] = α(tα)xα = κ(tα, tα)xα = (α|α)xα

where we have used (1) and (2). Now using the associativity of κ

(α|α)κ(xα, x−α) = κ([tα, xα], x−α) = κ(tα, [xα, x−α]) = κ(tα, hα) = α(hα) = 2.

This proves (6).
Now we may choose dual bases for g as follows:

first basis hi xα x−α
dual basis hi (α|α)x−α

2
(α|α)xα

2

.

We thus write

c =
∑̀
i=1

hih
i +

∑
α∈Φ+

(α|α)

2
(xαx−α + x−αxα).

Since [xα, x−α] = hα, we rewrite this

c =
∑̀
i=1

hih
i +

∑
α∈Φ+

(α|α)

2
(hα + 2x−αxα).

Now apply this to the highest weight vector v. Since xαv = 0 for α ∈ Φ+ we obtain

cv =

(∑̀
i=1

λ(hi)λ(hi) +
∑
α∈Φ+

(α|α)

2
λ(hα)

)
v.

Now by Proposition 9 we have

∑̀
i=1

λ(hi)λ(hi) = (λ|λ)
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while

λ(hα) = α∨(λ) =
2(λ|α)

(α|α)

so the constant equals

(λ|λ) +
∑
α∈Φ+

(λ|α) = (λ|λ) + 2(λ|ρ) = |λ+ ρ|2 − |ρ|2.

4 Category O and the Weyl Character Formula

We will now prove the Weyl character formula following Kac. It will be useful to work in
the following category of representations, Category O, introduced by Bernstein, Gelfand and
Gelfand.

Definition 1. A module is in Category O if it is h-diagonalizable with finite dimensional
weight spaces Vλ, such that there exists a finite set of weights {λ1, · · · , λN} such that Vµ = 0
unless µ 4 λi for some i.

By Proposition 5, this category contains all highest weight modules, is closed under
finite direct sums, and it contains all submodules and quotient modules of a Category O
module. In particular it is an abelian category with enough projectives and injectives and
a good homological theory. Humphreys wrote another book about it: Representations of
Semisimple Lie Algebras in the BGG Category O. We recommend this book, and also
Chapters 9 and 10 of Kac, Infinite-dimensional Lie algebras .

The Verma modules M(λ) may or may not be irreducible. We will say a module V is a
subquotient of a module W if there are submodules U ⊃ Q of W such that U/Q ∼= V . Thus
either a submodule or a quotient module is a subquotient.

Proposition 11. Suppose that V is a highest weight module with weight µ and V is a
subquotient of M(λ) then

|λ+ ρ|2 = |µ+ ρ|2.

Proof. Since c commutes with the action of g it must act as a scalar on M(λ), and by
Proposition 10 that scalar is |λ+ ρ|2− |ρ|2. So it acts by the same scalar on any submodule,
quotient module or subquotient. Also by Proposition 10 c acts by the scalar |µ + ρ|2 − |ρ|2
on any highest weight module V with highest weight λ, so |λ+ρ|2−|ρ|2 = |µ+ρ|2−|ρ|2.

Now let V be a module in Category O. We define the character of V to be the formal
expression

χV =
∑
λ

dim(Vλ)e
λ

where eλ is a formal symbol for λ ∈ h∗.
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Proposition 12. The character of M(λ) is

eλ
∏
α∈Φ+

(1− e−α)−1.

Proof. Let v be the highest weight vector. We recall from Theorem 1 that the map ξ 7−→ ξ ·v
from U(n−) to M(λ) is a vector space isomorphism. So by the PBW theorem a basis of M(λ)
consists of the vectors ( ∏

α∈Φ+

xkα−α

)
v, kα > 0,

where the positive roots Φ+ are taken in some fixed definite order. The weight of this vector
is λ−

∑
α∈Φ+ kαα, so

χV = eλ
∏
α∈Φ+

e−kαα = eλ
∏
α∈Φ+

(1− e−α)−1.

Let V be a module in Category O. A nonzero vector v ∈ V is called primitive if there
exists a proper submodule U ⊂ V such that v /∈ U but xαv ∈ U for all α ∈ Φ+ (or
equivalently, for all simple roots). We can take U = 0, so if xαv = 0 then v is primitive. In
other words, a highest weight vector is a primitive vector. More generally, v being primitive
means that the image of v in V/U is a highest weight vector for some proper submodule U
of V . We will call µ a primitive weight if Vµ contains a primitive vector.

Proposition 13. Let V be a module in Category O. Then V is generated by its primitive
vectors.

Proof. If not, consider the submodule U generated by the primitive vectors. Then Q =
V/U would be a nonzero submodule. If we choose a nonzero vector in Q whose weight is
maximal with respect to 4, then its preimage in V would be a primitive vector, which is a
contradiction.

Proposition 14. Let V be a module in Category O. Assume that V has only a finite number
weights. Then V has finite length. That is, it has a composition series

V = Vm ⊃ Vm−1 ⊃ · · · ⊃ V0 = 0

such that each quotient Vi/Vi−1 is irreducible, isomorphic to V (µ), where µ is a primitive
weight of V . (The quotients Vi/Vi−1 are called composition factors, and they are independent
of the composition series, by the Jordan-Hölder theorem.)

Proof. We argue by induction on the number of linearly independent primitive vectors.
Choose a primitive weight µ that is maximal with respect to <. Then clearly a primitive

vector v of weight µ must be a highest weight vector, so W = U(g)v = U(n−)v is a highest
weight module. By Proposition 6 it has a maximal submodule W ′ and the quotient Q =
W/W ′ is irreducible. Both V/W and W ′ have fewer independent primitive vectors than V ,
so by induction they have finite length. Since V/W , W ′ and the irreducible quotient W/W ′

all have finite length, it follows that V has finite length.
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Proposition 15. Let λ ∈ h∗. Then the character χL(λ) is of the form

χL(λ) =
∑
µ 4 λ

|µ+ ρ|2 = |λ+ ρ|2

cµχM(µ), (7)

where cλ = 1.

Proof. The weight µ of a primitive vector must satisfy µ 4 λ and |µ + ρ|2 = |λ + ρ|2 by
Proposition 11. Since the inner product is positive definite, this implies that there are only
a finite number of possible weights for primitive vectors, and so M(µ) has finite length. Also
by Proposition 11 the composition factors of M(µ) must be L(ν) where |ν+ ρ|2 = |µ+ ρ|2 =
|λ+ ρ|2. Let d(µ, ν) be the multiplicity of such L(ν). Then

χM(µ) =
∑
ν 4 µ

|ν + ρ|2 = |λ+ ρ|2

d(µ, ν)χL(ν).

Now the matrix d(µ, ν) indexed by pairs µ, ν is triangular since d(µ, µ) = 1 and d(µ, ν) = 0
unless ν 4 µ. So it is invertible and we may write

χL(µ) =
∑
ν 4 µ

|ν + ρ|2 = |λ+ ρ|2

d′(µ, ν)χM(ν).

Applying this to µ = λ gives (7).

Since the inner product is positive definite, (7) is a sum over only finitely many terms.

Remark 3. As an alternative way of understanding (7), we can try to find a resolution of
L(λ) by Verma modules in Category O. BGG showed that this can be done, and a resolution
by Verma modules is called a BGG resolution. Then (7) and by extension the Weyl character
formula are shadows of the BGG resolution.

We will define the Weyl denominator

∆ = eρ
∏
α∈Φ+

(1− e−α)−1.

Lemma 2. Let w ∈ W (the Weyl group). Then

w(∆) = sgn(w)∆.

Proof. It is sufficient to check this if w = sαi is a simple reflection. We recall that sα
maps the simple root αi to −αi and it permutes the remaining positive roots. Moreover
sαi(ρ) = ρ− αi. So if we write

∆ = eρ(1− e−αi)
∏

α ∈ Φ+

α 6= αi

(1− e−α)

then si maps eρ(1 − e−αi) to eρe−αi(1 − eαi) = −eρ(1 − e−αi) and fixes the product. Hence
si(∆) = −∆.
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Before we prove the Weyl character formula (postponing the proof of Proposition 15 to
the next section) it will be useful to introduce the dot action of the Weyl group on h∗. This
is just the usual action with the fixed point moved from the origin to −ρ. Thus

w ◦ λ = w(λ+ ρ)− ρ.

It is easy to check that w1 ◦ (w2 ◦ λ) = (w1w2) ◦ λ.

Theorem 2 (Weyl Character Formula). Let V be a finite-dimensional irreducible represen-
tation of g. Thus by Proposition 7 there is a dominant integral weight λ such that V = L(λ).
We have

χV = ∆−1
∑
w∈W

sgn(w)ew(λ+ρ) (8)

where W is the Weyl group and

∆ = eρ
∏
α∈Φ+

(1− e−α)−1.

The following argument is due to Kac, improving the proof of BGG. As an application,
Kac extended the applicability of the Weyl character formula for characters of integrable
representations of infinite-dimensional Kac-Moody Lie algebras. See Chapter 10 of his book
for this.

Proof. Using Proposition 12 we may rewrite (7) in the form

χL(λ) =
∑
µ 4 λ

|µ+ ρ|2 = |λ+ ρ|2

cµe
µ+ρ∆−1.

It may be simpler to write this as

χL(λ) =
∑
µ∈h∗

cµe
µ+ρ∆−1

and remember that cµ = 0 unless µ 4 λ and |µ + ρ|2 = |λ + ρ|2. We claim that if w ∈ W ,
then

cµ = sgn(w)cw◦µ. (9)

Indeed, since χL(λ) is invariant under the action of W , and since w(∆) = sgn(w)∆, we have
an identity ∑

µ∈h∗
cµe

µ+ρ∆−1 =
∑
µ∈h∗

sgn(w)cµe
w(µ+ρ)∆−1

and comparing the coefficients of ew◦µ = ew(µ+ρ)−ρ on both sides of this equation gives (9).
We know that cλ = 1, since this is part of Proposition 15. So by (9), we will have terms

corresponding to µ of the form w ◦ λ and the sum of these terms is

∆−1
∑
w∈W

cw(λ+ρ)−ρe
w(λ+ρ) = ∆−1

∑
w∈W

sgn(w)ew(λ+ρ).
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This is the right hand side of (8), so our task is to show that these are the only terms. That
is, we must show that cµ = 0 unless µ is of the form w ◦ λ for some w ∈ W .

Therefore we start with µ such that cµ 6= 0. By Proposition 1, there exists w ∈ W such
that w(µ+ ρ) is dominant. Let ν = w ◦ µ = w(µ+ ρ)− ρ. We will show that ν = λ. In any
case by (9), cν 6= 0 and so ν 4 λ and |λ+ ρ|2 = |ν + ρ|2. We write

λ− ν =
∑
α∈Φ+

kαα,

where since ν 4 λ we have kα > 0. We note the identity, for a, b ∈ h∗:

|a|2 − |b|2 = (a+ b|a− b).

We apply this and learn that

|λ+ ρ|2 − |ν + ρ|2 =

(
λ+ ν + 2ρ|

∑
α∈Φ+

kαα

)
.

Now λ and ν+ ρ = w(µ+ ρ) are both dominant, so λ+ ν+ 2ρ is strongly dominant meaning

(α∨|λ+ ν + 2ρ) > 0

for all positive roots α. Therefore |λ + ρ|2 = |ν + ρ|2 implies that kα = 0 for all α and so
ν = λ.
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