
Homework 7 Solutions
• Section 12 (p.67) # 4
• Section 13 (p.72) # 7 (explain why relevant)
• Section 22 (p.126) # 7
• Section 24 (p.141) # 1

Section 12 #4. Prove that the long roots in G2 form a root system in E of type A2.

Remark: One could also say that the short roots of G2 form a root system of type A2. But
there is a difference: If α, β are long roots in Φ = ΦG2 and α + β ∈ Φ, then α + β is a long
root. This implies that the xα (α long) generate a Lie subalgebra of the Lie algebra G2. This
would fail for short roots.

Solution. Humphreys describes G2 as a subalgebra of so(7). Referring to the notation
on pages 103-104, he names the 12 root vectors, and we repeat the description. Here if
1 6 i, j 6 7 the matrix eij is the elementary matrix with a 1 in the i, j position, 0’s
elsewhere. The root vectors corresponding to the long roots are:

g1,−2 = e23 − e65, g2,−1 = e32 − e56,

g1,−3 = e24 − e75, g3,−1 = e42 − e75,
g2,−3 = e34 − e76, g3,−2 = e43 − e76.

He also gives the short roots but we don’t need them for the solution to this problem. The
Cartan subalgebra of B3 is spanned by d1, d2, d3 with di = ei+1,i+1− ei+4,i+4 and the Cartan
subalgebra of G2 is the codimension 1 subspace H = {a1d1 + a2d2 + a3d3|

∑
ai = 0}. In

other words:

h := a1d1 + a2d2 + a3d3 =



0
a1

a2
a3
−a1

−a2
−a3


.

Now we compute easily with h as above

ad(h)g1,−2 = (a1 − a2)g1,−2, ad(h)g2,−1 = (a2 − a1)g1,−2
ad(h)g1,−3 = (a1 − a3)g1,−2, ad(h)g3,−1 = (a3 − a1)g3,−1
ad(h)g2,−3 = (a2 − a3)g2,−3 ad(h)g1,−2 = (a3 − a2)g3,−2.

We may embed sl3 as a Lie subalgebra of so(7) as follows:

g 7−→

 0
g
−tg


and under this embedding, the image is contained in G2. The above calculation shows that
the root subgroups spanned by g1,−2 etc. correspond to the roots ai − aj of sl2.
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Section 13 #7. If ε1, · · · , ε` is an obtuse basis of the Euclidean space E (i.e., all (εi, εj) 6 0
for i 6= j), prove that the dual basis is acute (i.e. (ε∗i , ε

∗
j) > 0 for i 6= j). [Hint: reduce to

the case ` = 2.]

Solution: We will not use Humphrey’s hint. Let us construct a new basis from ε1, · · · , ε`
by Gram-Schmidt orthogonalization. The new basis δ1, · · · , δ` is

δ1 = ε1

δ2 = ε2 −
(ε2, δ1)

(δ1, δ1)
δ1

...

δk = εk −
(εk, δ1)

(δ1, δ1)
δ1 − . . .−

(εk, δk−1)

(δk−1, δk−1)
δk−1.

...

The Gram-Schmidt algorithm guarantees that (δi, δj) = 0 if i 6= j.

Lemma 1. (i) The vector δk is a linear combination of ε1, · · · , εk with nonnegative coeffi-
cients;

(ii) If i > k then (εi, δk) 6 0.

Proof. This is by induction on k. Assuming these assertions are true for smaller values of k,
then using (ii) all of the coefficients in

δk = εk +

(
−(εk, δ1)

(δ1, δ1)

)
δ1 + . . .+

(
− (εk, δk−1)

(δk−1, δk−1)

)
δk−1

are nonnegative, and all the δi with i 6 k − 1 are linear combinations of ε1, · · · , εk−1 with
nonnegative coefficients, so δk is also a linear combination of ε1, · · · , εk with nonnegative
coefficients. Thus (i) is true. Now (ii) follows from (i) since if i > k and j 6 k then
(εi, εk) 6 0.

Let C be the convex cone consisting of

∑̀
i=1

aiεi, ai > 0.

Let C ′ be the dual cone

C ′ = {x ∈ E|(x, y) > 0 for y ∈ C} .

Proposition 2. If v, w ∈ C ′, then (v, w) > 0.

2



Proof. By Lemma 1, the basis δ1, · · · , δ` ∈ C, and so (v, δi) > 0 and (w, δi) > 0. The basis
δi is orthogonal, so we can write

v =
∑

aiδi, ai =
(v, δi)

(δi, δi)
> 0,

and

w =
∑

biδi, bi =
(w, δi)

(δi, δi)
> 0.

Now
(v, w) =

∑
aibi(δi, δi) > 0.

Since the ε∗i ∈ C ′, this solves the problem.

Application to root systems: We can take εi = α∨i = 2αi

(αi,αi)
. By Lemma 10.1 on page

47 of Humphreys, (εi, εj) 6 0 for i 6= j. Then the dual cone C ′ consists of the positive Weyl
chamber. Thus the Exercise implies that if λ, µ are dominant weights, then (λ, µ) > 0.

Section 22 #7. Let L = sl(2, F ), and identify mλ1 with the integer m. Use Propositions
A and B of (22.5), along with Theorem 7.2 to derive the Clebsch-Gordan formula: if n 6 m,
tnen

V (m)⊗ V (n) ∼= V (m+ n)⊕ V (m+ n− 2)⊕ · · · ⊕ V (m− n).

(Compare Exercise 7.6).

Solution. A good way to check this is to compute the characters of both sides. Please see
the posted solution to Exercise 7.6, which solves this problem too.

Section 24 #1. Give a direct proof of Weyl’s character formula (24.3) for type A1.

Solution. As Humphreys notes on page 124,

chλ = e(λ) + e(λ− α) + . . .+ e(λ−mα), m = (λ, α∨) =
2(λ, α)

(α, α)
. (1)

This just encodes the weights of the representation and their multiplicities:

V =
m⊕
k=0

Vλ−kα, dim(Vλ−kα) = 1.

Later he changes notation so in Theorem 23.4, ελ is the same as eλ. The Weyl character
formula, which we are trying to check, then says

chλ =

∑
w∈W (−1)`(w)ew(λ+ρ)∑
w∈W (−1)`(w)ew(ρ)

.

There is only one root α and ρ = α
2
. And the Weyl group consists of {1, s} where s = sα.

Since there is only one root, and E is one-dimensional, s : x 7→ −x for x ∈ E. Thus

chλ =
eλ+ρ − e−λ−ρ

eρ − e−ρ
.
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Writing λ = mρ, so m = (λ, α∨), this equals

e(m+1)ρ − e−(m+1)ρ

eρ − e−ρ
= emρ + e(m−2)ρ + . . .+ e−mρ (2)

as an application of the geometric series identity

xm+1 − x−(m+1)

x− x−1
= xm + xm−2 + . . .+ x−m.

Note that since λ = mρ and α = 2ρ, the two formulas (1) and (2) are the same.
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