Homework 7 Solutions

Section 12 (p.67) # 4

Section 13 (p.72) # 7 (explain why relevant)
Section 22 (p.126) # 7

Section 24 (p.141) # 1

Section 12 #4. Prove that the long roots in G5 form a root system in E of type As.

Remark: One could also say that the short roots of Gy form a root system of type A,. But
there is a difference: If o, 5 are long roots in ® = &4, and o+ g € @, then a + f is a long
root. This implies that the z, (« long) generate a Lie subalgebra of the Lie algebra G,. This
would fail for short roots.

Solution. Humphreys describes Gy as a subalgebra of s0(7). Referring to the notation
on pages 103-104, he names the 12 root vectors, and we repeat the description. Here if
1 < 4,7 < 7 the matrix e;; is the elementary matrix with a 1 in the ¢, position, 0’s
elsewhere. The root vectors corresponding to the long roots are:

g1,—2 = €23 — €65, g2,—1 = €32 — €56,
g1,—-3 = €24 — €75, g3,—1 = €42 — €75,
g2,-3 = €34 — €76, g3,—2 = €43 — €76.

He also gives the short roots but we don’t need them for the solution to this problem. The
Cartan subalgebra of Bs is spanned by di, da, d3 with d; = €;41,41 — €i+4,+4 and the Cartan
subalgebra of Gy is the codimension 1 subspace H = {a1d; + asds + azds| > a; = 0}. In
other words:

a1
az
h:= a1d1 + Cbgdg + a3d3 = as
—ay
—ay

—as
Now we compute easily with h as above
ad(h)g1,—2 = (a1 — az)g1 -2, ad(h)ga,—1 = (az — a1)g1,—2
ad(h)g1,—3 = (a1 — az)g, -2, ad(h)gs -1 = (a3 — a1)gs 1
ad(h)gz,—3 = (a2 — as)go,—3 ad(h)gi,—2 = (az — a2)gs—2.
We may embed sl3 as a Lie subalgebra of s0(7) as follows:

0
g— g
_t g
and under this embedding, the image is contained in GG3. The above calculation shows that
the root subgroups spanned by g; 2 etc. correspond to the roots a; — a; of sl,.
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Section 13 #7. If e, -+ , ¢, is an obtuse basis of the Euclidean space E (i.e., all (g;,&;) <0
for i # j), prove that the dual basis is acute (i.e. (gf,€}) > 0 for i # j). [Hint: reduce to
the case ¢ = 2.

Solution: We will not use Humphrey’s hint. Let us construct a new basis from eq,--- , &
by Gram-Schmidt orthogonalization. The new basis dy,- -,y is
(51 = &1
(827 51)
09 = €9 — 0
2 = &2 (51, 51) 1
(gka 51) (€k7 61671)
Op = € — o —...— ————0p_1.
T Gnen (Gh1,01) "

The Gram-Schmidt algorithm guarantees that (6;,0,) = 0 if 7 # j.

Lemma 1. (i) The vector 0y is a linear combination of €1, , & with nonnegative coeffi-
cients;

(i1) If i > k then (g, 6) < 0.

Proof. This is by induction on k. Assuming these assertions are true for smaller values of k,
then using (ii) all of the coefficients in

o=t~ ok () g

are nonnegative, and all the §; with ¢ < k — 1 are linear combinations of €q,--- ,ex_1 with
nonnegative coefficients, so 0y is also a linear combination of €1, , &, with nonnegative
coefficients. Thus (i) is true. Now (ii) follows from (i) since if i > k and j < k then
(eivex) < 0. O

Let C' be the convex cone consisting of

¢
Zaisi, a; 2 0.
i=1
Let C’ be the dual cone
C'={r € FE|(x,y) 20foryeC}.

Proposition 2. Ifv,w € ', then (v,w) > 0.



Proof. By Lemma 1, the basis d;,---,d, € C, and so (v,6;) = 0 and (w, d;) = 0. The basis
0; is orthogonal, so we can write

(vvéi)
— E 5. o >
v CLZ(S“ al (52’51) = 07
and (w.6)
w .
=3 b, by =" >0.
w 1V 3 (5,”6Z) O
Now

(U, U)) = Z a,bz(&, 51) 2 0.

Since the ¢f € C’, this solves the problem.

20
(aivai) ’
47 of Humphreys, (g;,¢;) < 0 for ¢ # j. Then the dual cone C” consists of the positive Weyl
chamber. Thus the Exercise implies that if A, 4 are dominant weights, then (A, x) > 0.

Application to root systems: We can take ¢; = o/ = By Lemma 10.1 on page

Section 22 #7. Let L = sl(2, F'), and identify mA; with the integer m. Use Propositions
A and B of (22.5), along with Theorem 7.2 to derive the Clebsch-Gordan formula: if n < m,
tnen

Vim)@Vn)=V(im+n)@Vim+n—-2)&---&V(m—n).
(Compare Exercise 7.6).

Solution. A good way to check this is to compute the characters of both sides. Please see
the posted solution to Exercise 7.6, which solves this problem too.

Section 24 #1. Give a direct proof of Weyl’s character formula (24.3) for type A;.

Solution. As Humphreys notes on page 124,

chy =e(A\)+e(A—a)+...+e(A—ma), m=(\a")= 2(\, @)

(o, )

This just encodes the weights of the representation and their multiplicities:
V= @ V)\—km dim(V,\_ka) = 1.
k=0

Later he changes notation so in Theorem 23.4, €y is the same as e*. The Weyl character
formula, which we are trying to check, then says

ZweW(_ 1)Z(w) ew()\+p)
D wew (1) Wete) -

There is only one root o and p = §. And the Weyl group consists of {1, s} where s = s,.
Since there is only one root, and E is one-dimensional, s : x — —xz for x € E. Thus

Ch/\ =



Writing A = mp, so m = (A, &), this equals

m+1 —(m+1
6( )P—e ( )pzemp+€(m—2)p+“.+e—mp

erP — e P
as an application of the geometric series identity

rmtl x—(m—i—l)

- =™+ ™
A

Note that since A = mp and o = 2p, the two formulas (1) and (2) are the same.



