
Homework 6 Solutions
• Section 6 (p.30) # 4,
• Section 10 (p.54) # 9,12,
• Section 13 (p.72) # 9.

Note: I am using some slightly different notations from Humphreys in the lectures and
in the statements of the homework problems. As Humphreys explains in a note at the end
of the book, notations standardized to a large extent after the book was written. Here are
some differences between my notation and his.

I am using the more standard notation sα for the “simple reflection” rα when α ∈ ∆.
I am using the notation w0 for the “long element” of the Weyl group, which is now very

standard.
I am denoting by ρ the Weyl vector

ρ =
1

2

∑
α∈Φ+

α.

This is denoted δ by Humphreys, but the notation ρ is now very standard.

Section 6 (p. 30) #4. Use Weyl’s theorem to give another proof that if L is semisimple,
then ad(L) = Der(L). [Hints: If δ ∈ Der(L), make the direct sum F ⊕ L into an L-module
by the rule

x · (a, z) = (0, aδ(x) + [x, y]).

Then consider a complement to the submodule L.]

Solution. Let us check that this definition makes F ⊕ L into a module. We need to check
that if x, y ∈ L and ξ ∈ F ⊕ L then

[x, y] · ξ = x · (y · ξ)− y · (x · ξ). (1)

If ξ = (a, z) then

x · (y · ξ) = x · (0, aδ(y) + [y, z]) = (0, a[x, δ(y)] + [x, [y, z]]).

Interchangin x and y and subtracting,

x · (y · ξ)− y · (x · ξ) = (0, a[x, δ(y)]− a[y, δ(x)] + [x, [y, z]]− [y, [x, z]]) =

(0, a([δ(x), y] + [x, δ(y)]) + [x, [y, z]]− [y, [x, z]]).

Now we use the fact that δ is a derivation and the Jacobi triple product identity to write
this as

(0, aδ([x, y]) + [[x, y], z]) = [x, y] · ξ,

proving (1). Thus we have an L-module on F ⊕ L.
By Weyl’s theorem, this module is completely reducible. Note that L is a submodule on

which L acts via the adjoint representation. So by Weyl’s theorem, L has a complementary
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submodule V in F ⊕L. Since L has codimension 1, this submodule is one-dimensional. Let
v = (a, z) be a basis vector. Note that a 6= 0 since V ∩L = 0. After multiplying by a nonzero
constant, we can arrange that a = 1.

A 1-dimensional module over a semisimple Lie algebra is trivial, that is, X · v = 0 for
X ∈ L and v ∈ V . So

0 = x · (1, z) = (0, [x, z] + δ(x)).

Therefore δ(x) = [z, x] for all x ∈ L, and δ = ad(z) is an inner derivation. This proves that
ad(L) = Der(L).

Section 10 (p. 54) #9. Prove that there is a unique element w0 ∈ W sending Φ+ to Φ−.
Prove that any reduced expression for w0 must involve all simple reflections sα (α ∈ ∆).

Solution. We will use the following:

Lemma 1. Let w ∈ W and let Φw = Φ+ ∩ w−1Φ+. If Φw is nonempty then it contains a
simple root.

Proof. Let α ∈ Φw. Then w(α) is a positive root. Let us write α in terms of the simple
roots:

α =
∑
β∈∆

nβ · β, nβ ∈ Z, nβ > 0.

Now w(α) =
∑
nβw(β). This is in Φ+ so at least one of the w(β) must be in Φ+. Then

this β ∈ Φw ∩∆, since it is a positive (even simple) root and w(β) ∈ Φ+. This contradiction
proves that Φw contains a simple root β.

Lemma 2. There is a unique w0 ∈ W such that Φ+ ∩ w−1
0 Φ+ is empty.

Proof. First choose w0 to minimize |Φ+ ∩ w−1
0 Φ+|. We will prove that Φ+ ∩ w−1

0 Φ+ = ∅.
If this set is not empty, by the last Lemma it contains a simple reflection α. Then since
sαΦ+ = Φ+ − {α} ∪ {−α} we see that

sαΦ+ ∩ w−1
0 Φ+ = (Φ+ ∩ w−1

0 Φ+)− {α}.

This set is sα(Φ+∩ (w0sα)−1Φ+) and its cardinality is the same as Φ+∩ (w0sα)−1Φ+ but less
than that of Φ+∩w−1

0 Φ+, contradicting the minimality of w0. This prove that Φ+∩w−1
0 Φ+ =

∅.

We may now finish the solution. Since w−1
0 Φ+ is disjoint from Φ+ we see that w0 takes

Φ+ to Φ−, as required. We must also show that w0 is the unique element of W with this
property. We must also show that w0 is unique. If w is another element of W that takes Φ+

to Φ−, then w−1w0 fixes Φ+, hence fixes ∆. It follows from Humphreys Theorem 10.3 (e)
that w = w0.

We are also asked to show that any reduced expression for w0 involves every sα (α ∈ ∆).
If β is any root, we may write

β =
∑
α∈∆

nα(β)α, nα(β) ∈ Z.
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Let us fix α ∈ ∆. The content of the assertion is that the group Pα generated by sγ, γ ∈ ∆,
γ 6= α does not contain w0. From the formula

sγ(x) = x− 2(γ, x)

(γ, γ)
γ

it is clear that if α, γ ∈ ∆ and γ 6= α then nα(sγ(β)) = nα(β). Therefore nα(w(α)) =
nα(α) = 1 for all w ∈ Pα. Thus if w is a product of simple reflections sγ with γ 6= α but no
γ = α then nα(wα) = 1. In particular w(α) can never be a negative root, so w 6= w0.

Section 10 (p. 54) #12. Let λ ∈ C(∆). If wλ = λ for some w ∈ W , then w = 1.

Solution. For use in the following problem, we will prove a little more.

Lemma 3. Let λ ∈ C(∆). Suppose that wλ ∈ C(∆). Then w = 1.

Proof. The open positive Weyl chamber C(∆) is by definition the set of λ in the Euclidean
space E such that (λ, α) > 0 for all α ∈ Φ+. If also w 6= 1, then by Humphreys Theo-
rem 10.3 (e) the set w−1∆ contains a negative root. This means that there exists α ∈ ∆
such that w−1α ∈ Φ−. So −w−1α ∈ Φ+. Now (λ,−w−1α) > 0 since λ ∈ C(∆). This equals
(wλ,−α) and so (wλ, α) < 0. Thus wλ /∈ C(∆).

This clearly solves this problem.

Section 13 (p. 72) #9. Let λ ∈ Λ+. Prove that for w ∈ W the weight w(λ + ρ) − ρ is
dominant only if w = 1.

Solution. We will say that a λ is strongly dominant if λ ∈ C(∆), that is, (λ, α) > 0 for
α ∈ ∆. To be dominant we only require that (λ, α) > 0 for α ∈ ∆, i.e. that λ ∈ C(∆). The
root λ is dominant, but ρ is strictly dominant, so λ + ρ is strictly dominant. Now suppose
that w(λ+ρ)−ρ is dominant. Then w(λ+ρ) is strictly dominant. Now by Lemma 3, w = 1.
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