Homework 6 Solutions

e Section 6 (p.30) # 4,
e Section 10 (p.54) # 9,12,
e Section 13 (p.72) # 9.

Note: I am using some slightly different notations from Humphreys in the lectures and
in the statements of the homework problems. As Humphreys explains in a note at the end
of the book, notations standardized to a large extent after the book was written. Here are
some differences between my notation and his.

I am using the more standard notation s, for the “simple reflection” r, when o € A.

I am using the notation wy for the “long element” of the Weyl group, which is now very
standard.

I am denoting by p the Weyl vector

p=5 Y a
acdt

This is denoted 6 by Humphreys, but the notation p is now very standard.

Section 6 (p. 30) #4. Use Weyl’s theorem to give another proof that if L is semisimple,
then ad(L) = Der(L). [Hints: If 6 € Der(L), make the direct sum F' & L into an L-module
by the rule

z-(a,2) = (0,a0(z) + [z, y]).

Then consider a complement to the submodule L.]

Solution. Let us check that this definition makes F' @ L into a module. We need to check
that if z,y € L and € € F & L then

[,y =z (y-&) -y (x-8). (1)
If £ = (a, z) then
z-(y-&) =x-(0,a0(y) + [y, 2]) = (0, alz, 0(y)] + [z, [y, 2]]).

Interchangin x and y and subtracting,
z-(y-&) —y-(x-&§) = (0,afz,0(y)] — aly, 6(x)] + [z, [y, 2l = [y, [z, 2]]) =

(0, a([6(x), yl + [x,0(x)]) + [, [y, 2]] = [y, [, 2]))-

Now we use the fact that ¢ is a derivation and the Jacobi triple product identity to write
this as

(0,@5([$,y]) + [[l’,y],Z]) = [xay] ' 57

proving (1). Thus we have an L-module on F' & L.
By Weyl’s theorem, this module is completely reducible. Note that L is a submodule on
which L acts via the adjoint representation. So by Weyl’s theorem, L has a complementary
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submodule V in F'& L. Since L has codimension 1, this submodule is one-dimensional. Let
v = (a, z) be a basis vector. Note that a # 0 since VN L = 0. After multiplying by a nonzero
constant, we can arrange that a = 1.
A 1-dimensional module over a semisimple Lie algebra is trivial, that is, X - v = 0 for
XeLandveV. So
0==x-(1,2) = (0,[z, 2] + d(x)).

Therefore §(x) = [z,z] for all € L, and 6§ = ad(z) is an inner derivation. This proves that

ad(L) = Der(L).

Section 10 (p. 54) #9. Prove that there is a unique element wy € W sending ®* to &~
Prove that any reduced expression for wy must involve all simple reflections s, (o € A).

Solution. We will use the following:

Lemma 1. Let w € W and let ®, = ®T Nw=1d*. If &, is nonempty then it contains a
simple root.

Proof. Let a € ®,,. Then w(«) is a positive root. Let us write « in terms of the simple
roots:
a:Znﬁ'ﬁ, ng € Z, mng = 0.
BeA
Now w(a) = > ngw(B). This is in ®* so at least one of the w(f) must be in &*. Then
this 8 € ®, N A, since it is a positive (even simple) root and w() € ®*. This contradiction
proves that ®,, contains a simple root . O]

Lemma 2. There is a unique wy € W such that ®F Nwy ' ®F is empty.

Proof. First choose wy to minimize |®* Nw,'®*|. We will prove that ®+ Nwy'd* = 2.
If this set is not empty, by the last Lemma it contains a simple reflection a. Then since
5o P = & — {a} U {—a} we see that

5@ Nwy '@ = (& Nwy @) — {al.

This set is 84(PT N (wps,) 1PT) and its cardinality is the same as @ N (wps,) 1P but less
than that of ®*Nw,'®*, contradicting the minimality of wy. This prove that &+ Nwy 'd+ =
a. O

We may now finish the solution. Since wy'®* is disjoint from ®* we see that w, takes
Ot to ¢, as required. We must also show that wy is the unique element of W with this
property. We must also show that wy is unique. If w is another element of W that takes ®*
to ®~, then w™lwy fixes @+, hence fixes A. It follows from Humphreys Theorem 10.3 (e)
that w = wy.

We are also asked to show that any reduced expression for wy involves every s, (o € A).
If B is any root, we may write

B=> na(Ba,  n.B) €L

a€cA



Let us fix @ € A. The content of the assertion is that the group P, generated by s, v € A,
v # « does not contain wy. From the formula

(7,7)

it is clear that if o,y € A and v # a then n,(s,(8)) = na(5). Therefore n,(w(a)) =
ne(a) =1 for all w € P,. Thus if w is a product of simple reflections s, with v # a but no
v = «a then n,(wa) = 1. In particular w(a)) can never be a negative root, so w # wy.

Section 10 (p. 54) #12. Let A € €(A). If wA = X for some w € W, then w = 1.

Solution. For use in the following problem, we will prove a little more.
Lemma 3. Let A € €(A). Suppose that wh € €(A). Then w = 1.

Proof. The open positive Weyl chamber €(A) is by definition the set of A in the Euclidean
space E such that (A\,a) > 0 for all a € ®*. If also w # 1, then by Humphreys Theo-
rem 10.3 (e) the set w™'A contains a negative root. This means that there exists a € A
such that w™a € ®~. So —w™ta € ®*. Now (A, —w™'a) > 0 since A € €(A). This equals
(wA, —a) and so (wA, a) < 0. Thus wA ¢ C(A). O

This clearly solves this problem.

Section 13 (p. 72) #9. Let A € AT. Prove that for w € W the weight w(A + p) — p is
dominant only if w = 1.

Solution. We will say that a A\ is strongly dominant if A\ € €(A), that is, (A, «a) > 0 for
a € A. To be dominant we only require that (A, ) > 0 for a € A, i.e. that A € €(A). The
root A is dominant, but p is strictly dominant, so A 4 p is strictly dominant. Now suppose

that w(A+p) — p is dominant. Then w(A+ p) is strictly dominant. Now by Lemma 3, w = 1.



