
Homework 5 Solutions
• Section 9 (p.45) # 2, 6,

• Section 10 (p.54) # 2,6.

Section 9, Problem 2. Prove that Φ∨ is a root system in E, whose Weyl group is naturally
isomorphic to W ; show also that

2(β∨, α∨)

(α∨, α∨)
=

2(α, β)

(β, β)
(1)

and draw a picture of Φ∨ in the cases A2, B2, G2.

Solution. Recall that α∨ is defined for nonzero α in a Euclidean space E as

α∨ =
2α

(α, α)
.

Thus the vector α∨ is proportional to α, but its length is inverted, so long vectors become
short, and short vectors become long.

Lemma 1. If we do this operation twice, we recover α. That is, (α∨)∨ = α.

Proof. Indeed,

(α∨)∨ =
2α∨

(α∨, α∨)
=

2× 2α/(αα)

4(αα)/(αα)2
= α. (2)

Now let us prove (1).
2(α, β)

(β, β)
=

(
α,

2β

(β, β)

)
= (α, β∨),

while using Lemma 1,
2(β∨, α∨)

(α∨, α∨)
= (β∨, (α∨)∨) = (β∨, α).

Comparing the last two identities proves (1).
I will use rα to denote the reflection in the hyperplane orthogonal to a vector α. Humphreys

uses the notation σα for rα.

Lemma 2. The transformation rα is an isometry, that is

(rα(x), rα(y)) = (x, y). (3)

Proof. This is obvious from the characterization of the map as a reflection in a hyperplane
through the origin.

Lemma 3. The reflections rα and rα∨ are the same transformation of E.
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Proof. This is because rα is the hyperplane orthogonal to α, but this is also the hyperplane
orthogonal to the proportional vector α∨, so the reflections are the same.

Lemma 4. We have
rα(β∨) = rα(β)∨.

Proof. This is because the vectors β and rα(β) have the same length, by Lemma 2, so

rα(β)∨ =
2rα(β)

(rα(β), rα(β))
=

2rα(β)

(β, β)
= rα

(
2β

(β, β)

)
= rα(β∨).

Theorem 5. Φ∨ = {α∨|α ∈ Φ} is a root system.

Proof. If α∨ ∈ Φ∨ then we need to show that rα∨(β∨) ∈ Φ∨. This follows from the last two
Lemmas since rα∨(β∨) = rα(β∨) = rα(β)∨, and rα(β) ∈ Φ. We also need to know that if
α∨, β∨ ∈ Φ∨, then 2(α∨, β∨)/(α∨, β∨) ∈ Z, but this follows from (1).

Section 9, Problem 6. Prove that W is a normal subgroup of Aut(Φ), the group of all
linear isomorphisms of Φ onto itself.

Solution. As in the last notation, I am using rα for the reflection in a root or more generally
a nonzero vector in the ambient space E, which in Humphreys’ notation is σα.

We recall the formula:
σrασ

−1 = rσ(α) (4)

from the Lemma in Section 9.2 (p.43). Humphreys asserts this for w ∈ W , but it is actually
true if σ is an isometry, that is, (σ(x), σ(y)) = (x, y) for x, y ∈ E. According to the definition
(page 43) automorphisms of the root system are assumed to be isometries.

To prove (4) if σ is an isometry, we can either note that since σ, rα and σ are all isometries,
the left-hand side is an isometry that fixes the hyperplane orthogonal to σ(α), and maps
σ(α) to its negative, hence agrees with rσ(α). Alternatively, we can just compute:

σrασ
−1(x) = σ

(
σ−1(x)− 2(α, σ−1x)

(α, α)
α

)
= σ

(
σ−1(x)− 2(σ(α), σσ−1(x))

(σ(α), σ(α))
α

)

= x− 2(w(α), x)

(w(α), w(α))
w(α) = rw(α)(x).

Now we can prove that W is normal in Aut(Φ). If σ is an automorphism of Φ, then since
W is generated by the rα with α ∈ Φ, it is sufficient to show that σrασ

−1 ∈ W , but this is
an immediate consequence of (4).
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Section 10, Problem 2. If ∆ is a base of Φ, and α, β ∈ ∆ (α 6= β), prove that the set
(Zα + Zβ) ∩ Φ is a root system of rank 2 in the subspace E spanned by α, β (see Exercise
9.7).

Solution. This is a very useful observation, since the rank two root systems are easily
classified as A1 × A1, A2, B2 = C2 or G2.

Let V ⊂ E be the vector subspace spanned by α, β. We claim that (Zα+Zβ)∩Φ = V ∩Φ.
Indeed, if γ ∈ V ∩ Φ we may write γ =

∑
δ∈Φ+ nδ · δ where nδ ∈ Z. Because the elements of

∆ are linearly independent, we must have nδ = 0 unless δ = α or β, so γ ∈ (Zα + Zβ) ∩ Φ.
With this in mind, the axioms of a root system for V ∩Φ are easily verified. If γ ∈ V ∩Φ

then rγ(V ) = V follows from the formula rγ(x) = x − (x, γ∨)γ, and rγ(Φ) = Φ since Φ is
a root system, so rγ(V ∩ Φ) = V ∩ Φ. The Cartan numbers 2(γ, δ)/(γ, γ) are integers for
γ, δ ∈ V ∩ Φ since Φ is a root system.

We are also asked to draw some pictures. I’ll just do B2 and its dual root system, which
is isomorphic to C2. Note how if α is a long root, then α∨ is a short root.

α1

α2

α∨
1

α∨
2

Section 10, Problem 6. Define a function sn : W −→ {±1} by sn(σ) = (−1)`(σ). Prove
that sn is a homomorphism.

Solution. Let ∆ = {α1, · · · , α`}, and let si = rαi
be the corresponding simple reflections.

Lemma 6. As a linear transformation of E, det(si) = −1.

Proof. Choose a basis v1, · · · , v` of E such that v1 = αi is the first basis vector, and v2, · · · , v`
are orthogonal to v1. Then v1, · · · , v` are eigenvectors of si, with eigenvalues −1, 1, · · · , 1.
So the determinant of si is the product of the eigenvalues, or −1.

Now if w ∈ W write w = si1 · · · sik where k = `(w). Then sn(w) = (−1)k = det(w).
Since the sign of w is thus its determinant, it is multiplicative.

Note: An alternative solution may be based on the exchange principle (Lemma C on
page 50).
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