Homework 5 Solutions

e Section 9 (p.45) # 2, 6,

e Section 10 (p.h4) # 2,6.

Section 9, Problem 2. Prove that ®¥ is a root system in F, whose Weyl group is naturally
isomorphic to W; show also that
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and draw a picture of ®" in the cases As, By, Gs.

Solution. Recall that o" is defined for nonzero « in a Euclidean space E as
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Thus the vector oV is proportional to a, but its length is inverted, so long vectors become
short, and short vectors become long.
\/)\/

Lemma 1. If we do this operation twice, we recover .. That is, (« = .

Proof. Indeed,
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Now let us prove (1).

while using Lemma 1,
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Comparing the last two identities proves (1).
I will use r,, to denote the reflection in the hyperplane orthogonal to a vector . Humphreys
uses the notation o, for r,.

Lemma 2. The transformation r, is an isometry, that is

(ra(z),7a(y)) = (2,9). (3)

Proof. This is obvious from the characterization of the map as a reflection in a hyperplane
through the origin. O

Lemma 3. The reflections r, and rov are the same transformation of E.



Proof. This is because r,, is the hyperplane orthogonal to a;, but this is also the hyperplane
orthogonal to the proportional vector oV, so the reflections are the same. O

Lemma 4. We have

ra(8Y) =ra(8)".

Proof. This is because the vectors 3 and r,(f) have the same length, by Lemma 2, so
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Theorem 5. ¥ = {aV|a € O} is a root system.

Proof. It oY € ®¥ then we need to show that r,v(5Y) € ®". This follows from the last two
Lemmas since 7,v(8Y) = ro(8Y) = ro(B)Y, and r,(8) € ®. We also need to know that if
aY, Y € @Y, then 2(a”, 5Y)/(a¥, BY) € Z, but this follows from (1). O

Section 9, Problem 6. Prove that WV is a normal subgroup of Aut(®), the group of all
linear isomorphisms of ¢ onto itself.

Solution. As in the last notation, I am using r,, for the reflection in a root or more generally
a nonzero vector in the ambient space F, which in Humphreys’ notation is o,.

We recall the formula:

or,o b= To(a) (4)

from the Lemma in Section 9.2 (p.43). Humphreys asserts this for w € W, but it is actually
true if o is an isometry, that is, (o(x),0(y)) = (x,y) for x,y € E. According to the definition
(page 43) automorphisms of the root system are assumed to be isometries.

To prove (4) if o is an isometry, we can either note that since o, r,, and o are all isometries,
the left-hand side is an isometry that fixes the hyperplane orthogonal to o(«), and maps
o(a) to its negative, hence agrees with r,(,). Alternatively, we can just compute:
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Now we can prove that W is normal in Aut(®). If ¢ is an automorphism of ®, then since
W is generated by the r, with a € ®, it is sufficient to show that or,o™' € W | but this is
an immediate consequence of (4).



Section 10, Problem 2. If A is a base of ®, and o, € A (a # ), prove that the set
(Zao+ ZB) N @ is a root system of rank 2 in the subspace E spanned by «, f (see Exercise
9.7).

Solution. This is a very useful observation, since the rank two root systems are easily
classified as A; x Ay, Ay, By = Cs or Gs.

Let V' C E be the vector subspace spanned by «, 5. We claim that (Za+Z5)N® = VNo.
Indeed, if v € VN ® we may write v = ) s 4+ N5 - 6 where ng € Z. Because the elements of
A are linearly independent, we must have ns = 0 unless § = « or 3, so v € (Za + Z5) N P.

With this in mind, the axioms of a root system for V N ® are easily verified. If y € VN®
then r, (V) = V follows from the formula r,(z) = z — (z,7")y, and r,(®) = ® since P is
a root system, so r,(V N ®) = VN &. The Cartan numbers 2(vy,)/(7,y) are integers for
v,0 € VN ® since P is a root system.

We are also asked to draw some pictures. I'll just do By and its dual root system, which
is isomorphic to Cy. Note how if « is a long root, then oV is a short root.
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Section 10, Problem 6. Define a function sn : W — {£1} by sn(o) = (—1)%?). Prove
that sn is a homomorphism.

Solution. Let A = {ay, -+ ,a}, and let s; = r,, be the corresponding simple reflections.
Lemma 6. As a linear transformation of E, det(s;) = —1.

Proof. Choose a basis vy, - -+ , v, of E such that v; = «; is the first basis vector, and vy, - -+ , vy
are orthogonal to v;. Then vy,--- v, are eigenvectors of s;, with eigenvalues —1,1,--- 1.
So the determinant of s; is the product of the eigenvalues, or —1. O

Now if w € W write w = s;, -+ -s;, where k = ((w). Then sn(w) = (—=1)* = det(w).
Since the sign of w is thus its determinant, it is multiplicative.

Note: An alternative solution may be based on the exchange principle (Lemma C on
page 50).



