Homework 5 Solutions

- Section 9 (p.45) # 2, 6,
- Section 10 (p.54) # 2,6.

Section 9, Problem 2. Prove that Φ^{\vee} is a root system in E, whose Weyl group is naturally isomorphic to \mathcal{W} ; show also that

$$\frac{2(\beta^{\vee},\alpha^{\vee})}{(\alpha^{\vee},\alpha^{\vee})} = \frac{2(\alpha,\beta)}{(\beta,\beta)} \tag{1}$$

and draw a picture of Φ^{\vee} in the cases A_2 , B_2 , G_2 .

Solution. Recall that α^{\vee} is defined for nonzero α in a Euclidean space E as

$$\alpha^{\vee} = \frac{2\alpha}{(\alpha, \alpha)}.$$

Thus the vector α^{\vee} is proportional to α , but its length is inverted, so long vectors become short, and short vectors become long.

Lemma 1. If we do this operation twice, we recover α . That is, $(\alpha^{\vee})^{\vee} = \alpha$.

Proof. Indeed,

$$(\alpha^{\vee})^{\vee} = \frac{2\alpha^{\vee}}{(\alpha^{\vee}, \alpha^{\vee})} = \frac{2 \times 2\alpha/(\alpha \alpha)}{4(\alpha \alpha)/(\alpha \alpha)^2} = \alpha.$$
(2)

Now let us prove
$$(1)$$
. 2

$$\frac{2(\alpha,\beta)}{(\beta,\beta)} = \left(\alpha,\frac{2\beta}{(\beta,\beta)}\right) = (\alpha,\beta^{\vee}),$$

while using Lemma 1,

$$\frac{2(\beta^{\vee},\alpha^{\vee})}{(\alpha^{\vee},\alpha^{\vee})} = (\beta^{\vee},(\alpha^{\vee})^{\vee}) = (\beta^{\vee},\alpha).$$

Comparing the last two identities proves (1).

I will use r_{α} to denote the reflection in the hyperplane orthogonal to a vector α . Humphreys uses the notation σ_{α} for r_{α} .

Lemma 2. The transformation r_{α} is an isometry, that is

$$(r_{\alpha}(x), r_{\alpha}(y)) = (x, y). \tag{3}$$

Proof. This is obvious from the characterization of the map as a reflection in a hyperplane through the origin. \Box

Lemma 3. The reflections r_{α} and $r_{\alpha^{\vee}}$ are the same transformation of E.

Proof. This is because r_{α} is the hyperplane orthogonal to α , but this is also the hyperplane orthogonal to the proportional vector α^{\vee} , so the reflections are the same.

Lemma 4. We have

$$r_{\alpha}(\beta^{\vee}) = r_{\alpha}(\beta)^{\vee}.$$

Proof. This is because the vectors β and $r_{\alpha}(\beta)$ have the same length, by Lemma 2, so

$$r_{\alpha}(\beta)^{\vee} = \frac{2r_{\alpha}(\beta)}{(r_{\alpha}(\beta), r_{\alpha}(\beta))} = \frac{2r_{\alpha}(\beta)}{(\beta, \beta)} = r_{\alpha}\left(\frac{2\beta}{(\beta, \beta)}\right) = r_{\alpha}(\beta^{\vee}).$$

Theorem 5. $\Phi^{\vee} = \{\alpha^{\vee} | \alpha \in \Phi\}$ is a root system.

Proof. If $\alpha^{\vee} \in \Phi^{\vee}$ then we need to show that $r_{\alpha^{\vee}}(\beta^{\vee}) \in \Phi^{\vee}$. This follows from the last two Lemmas since $r_{\alpha^{\vee}}(\beta^{\vee}) = r_{\alpha}(\beta^{\vee}) = r_{\alpha}(\beta)^{\vee}$, and $r_{\alpha}(\beta) \in \Phi$. We also need to know that if $\alpha^{\vee}, \beta^{\vee} \in \Phi^{\vee}$, then $2(\alpha^{\vee}, \beta^{\vee})/(\alpha^{\vee}, \beta^{\vee}) \in \mathbb{Z}$, but this follows from (1).

Section 9, Problem 6. Prove that \mathcal{W} is a normal subgroup of $\operatorname{Aut}(\Phi)$, the group of all linear isomorphisms of Φ onto itself.

Solution. As in the last notation, I am using r_{α} for the reflection in a root or more generally a nonzero vector in the ambient space E, which in Humphreys' notation is σ_{α} .

We recall the formula:

$$\sigma r_{\alpha} \sigma^{-1} = r_{\sigma(\alpha)} \tag{4}$$

from the Lemma in Section 9.2 (p.43). Humphreys asserts this for $w \in W$, but it is actually true if σ is an isometry, that is, $(\sigma(x), \sigma(y)) = (x, y)$ for $x, y \in E$. According to the definition (page 43) automorphisms of the root system are assumed to be isometries.

To prove (4) if σ is an isometry, we can either note that since σ , r_{α} and σ are all isometries, the left-hand side is an isometry that fixes the hyperplane orthogonal to $\sigma(\alpha)$, and maps $\sigma(\alpha)$ to its negative, hence agrees with $r_{\sigma(\alpha)}$. Alternatively, we can just compute:

$$\sigma r_{\alpha} \sigma^{-1}(x) = \sigma \left(\sigma^{-1}(x) - \frac{2(\alpha, \sigma^{-1}x)}{(\alpha, \alpha)} \alpha \right) = \sigma \left(\sigma^{-1}(x) - \frac{2(\sigma(\alpha), \sigma\sigma^{-1}(x))}{(\sigma(\alpha), \sigma(\alpha))} \alpha \right)$$
$$= x - \frac{2(w(\alpha), x)}{(w(\alpha), w(\alpha))} w(\alpha) = r_{w(\alpha)}(x).$$

Now we can prove that W is normal in $\operatorname{Aut}(\Phi)$. If σ is an automorphism of Φ , then since W is generated by the r_{α} with $\alpha \in \Phi$, it is sufficient to show that $\sigma r_{\alpha} \sigma^{-1} \in W$, but this is an immediate consequence of (4).

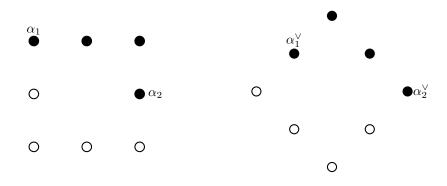
Section 10, Problem 2. If Δ is a base of Φ , and $\alpha, \beta \in \Delta$ ($\alpha \neq \beta$), prove that the set $(\mathbb{Z}\alpha + \mathbb{Z}\beta) \cap \Phi$ is a root system of rank 2 in the subspace *E* spanned by α, β (see Exercise 9.7).

Solution. This is a very useful observation, since the rank two root systems are easily classified as $A_1 \times A_1$, A_2 , $B_2 = C_2$ or G_2 .

Let $V \subset E$ be the vector subspace spanned by α, β . We claim that $(\mathbb{Z}\alpha + \mathbb{Z}\beta) \cap \Phi = V \cap \Phi$. Indeed, if $\gamma \in V \cap \Phi$ we may write $\gamma = \sum_{\delta \in \Phi^+} n_\delta \cdot \delta$ where $n_\delta \in \mathbb{Z}$. Because the elements of Δ are linearly independent, we must have $n_\delta = 0$ unless $\delta = \alpha$ or β , so $\gamma \in (\mathbb{Z}\alpha + \mathbb{Z}\beta) \cap \Phi$.

With this in mind, the axioms of a root system for $V \cap \Phi$ are easily verified. If $\gamma \in V \cap \Phi$ then $r_{\gamma}(V) = V$ follows from the formula $r_{\gamma}(x) = x - (x, \gamma^{\vee})\gamma$, and $r_{\gamma}(\Phi) = \Phi$ since Φ is a root system, so $r_{\gamma}(V \cap \Phi) = V \cap \Phi$. The Cartan numbers $2(\gamma, \delta)/(\gamma, \gamma)$ are integers for $\gamma, \delta \in V \cap \Phi$ since Φ is a root system.

We are also asked to draw some pictures. I'll just do B_2 and its dual root system, which is isomorphic to C_2 . Note how if α is a long root, then α^{\vee} is a short root.



Section 10, Problem 6. Define a function $\operatorname{sn} : \mathcal{W} \longrightarrow \{\pm 1\}$ by $\operatorname{sn}(\sigma) = (-1)^{\ell(\sigma)}$. Prove that sn is a homomorphism.

Solution. Let $\Delta = \{\alpha_1, \dots, \alpha_\ell\}$, and let $s_i = r_{\alpha_i}$ be the corresponding simple reflections.

Lemma 6. As a linear transformation of E, $det(s_i) = -1$.

Proof. Choose a basis v_1, \dots, v_ℓ of E such that $v_1 = \alpha_i$ is the first basis vector, and v_2, \dots, v_ℓ are orthogonal to v_1 . Then v_1, \dots, v_ℓ are eigenvectors of s_i , with eigenvalues $-1, 1, \dots, 1$. So the determinant of s_i is the product of the eigenvalues, or -1.

Now if $w \in W$ write $w = s_{i_1} \cdots s_{i_k}$ where $k = \ell(w)$. Then $\operatorname{sn}(w) = (-1)^k = \operatorname{det}(w)$. Since the sign of w is thus its determinant, it is multiplicative.

Note: An alternative solution may be based on the exchange principle (Lemma C on page 50).