
Math 210C Homework 4
• Section 7 (p.34) # 2,6,7,

• Section 8 (p.40) # 5,8,11.

Section 7 #2. Let M = sl(3, F ). Then M contains a copy of L = sl(2, F ) in its upper
left-hand corner. Write M as a direct sum of irreducible L-submodules (M viewed as an
L-module via the adjoint representation): V (0)⊕ V (1)⊕ V (1)⊕ V (2).

Solution: We will use this notation for sl(2):

H =

(
1
−1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

These are denoted h, x, y by Humphreys.
Here is a more general strategy for decomposing a module into sl(2) irreducibles. We

recall from Section 7 that the irreducible module V (m) contains a highest weight vector v0

which is characterized up to constant multiple by the condition that Ev0 = 0. If v0 is found,
then m can be recovered because Hv0 = λv0. Therefore we arrive at the following way of
decomposing an sl(2) module W into irreducibles. If

W = V (m1)⊕ V (m2)⊕ · · · ⊕ V (mN),

let
W0 = {v ∈ W |Ev = 0}.

Then W0 is spanned by the highest weight vectors, one for each component V (mi). Moreover,
since the highest weight vector in V (mi) is an eigenvector of H with eigenvalue mi, the
multiplicity of the eigenvalue λ of H in W0 is the number of mi that are equal to λ.

Now embedding sl(2) −→ sl(3) in the upper-left corner, we are asked to decompose sl(3),
which is then an sl(2) module into irreducibles. Applying the technique just explained with
W = sl(3) the space

W0 = {X ∈ sl(3)| ad(E)X = 0}, E =

 0 1 0
0 0 0
0 0 0

 .

Writing

X =

 a b c
d e f
g h −a− e


the condition to be in W0 is that ad(E)X = 0, where

ad(E12)X = EX −XE =

 d e− a f
0 −d 0
0 −g 0

 .
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Thus W0 is characterized by d = f = g = 0 and a = e:

W0 =


 a b c

0 a 0
0 h −2a

 .

Now, as we explained, the multiplicity of V (m) in the decomposition into irreducibles is the
multiplicity of m as an eigenvalue of ad(H), where under the embedding sl(2) −→ sl(3)

H =

 1
−1

0

 .

We compute

ad(H)

 a b c
0 a 0
0 h −2a

 =

 a b c
0 −a 0
0 0 0

−
 a −b 0

0 −a 0
0 −h 0

 =

 0 2b c
0 0 0
0 h 0

 .

From this we can see the eigenvalues:

EigenvectorX ∈ W0

 1 0 0
0 1 0
0 0 0

  0 1 0
0 0 0
0 0 0

  0 0 1
0 0 0
0 0 0

  0 0 0
0 0 0
0 1 0


Eigenvalue of ad(H) 0 2 1 1

Thus we arrive at the decomposition

sl(3) = V (0)⊕ V (1)⊕ V (1)⊕ V (2).

As a check, the dimensions are dim(sl(3)) = 8, and on the right-hand side, since dim V (m) =
m+ 1, the dimension is 1 + 3 + 2 + 2 = 8.

The modules can be made explicit. The V (2) is just sl(2) embedded in the left corner,
the V (0) is just the linear span of its basis vector, and the 2-dimensional V (1) modules are:

 0 0 ∗
0 0 ∗
0 0 0

 ,


 0 0 0

0 0 0
∗ ∗ 0

 .

Section 7 #6. Decompose the tensor product of the L = sl(2) modules V (3), V (7) into
the sum of irreducible submodules: V (4)⊕ V (6)⊕ V (8)⊕ V (10). Try to develop a general
formula for the decomposition of V (m)⊗ V (n).

Solution. We will give a different general method of decomposing an sl(2) module into irre-
ducibles than we used in the previous example. If W is an sl(2) module, we may decompose
this into H-eigenspaces:

W =
⊕
m

Wm, Wm = {v ∈ W |Hv = mv}.
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We only care about the dimensions of these, and we encode this information in a polynomial,
the character χM :

χM =
∑
m

dim(Wm)qm

where q is an indeterminate. For example, by Humphreys Theorem 7.2, if W is the irreducible
V (m) then it is spanned by v0, · · · , vm where vi spans a one-dimensional Wm−2i, so

χV (0) = 1
χV (1) = q + q−1

χV (2) = q2 + 1 + q−2

...
χV (m) = qm + qm−2 + . . .+ q−m.

Lemma 1. If we can find integers m1, · · · ,mk such that

χM = χV (m1) + χV (m2) + . . .+ χV (mk) (1)

then
M ∼= V (m1)⊕ · · · ⊕ V (mk).

Proof. There always exists a decomposition (1) by Weyl’s theorem (Section 6.3) and the
classification of irreducibles for sl(2) (Section 7.2). The numbers mi are determined by the
character, because the characters of the irreducibles, χV (m) = qm + qm−2 + . . . + q−m are
easily seen to be linearly independent.

Lemma 2. The character is multiplicative, that is

χV⊗W = χV χW .

Proof. Let x ∈ Vm and y ∈ Wn. Then we claim that x⊗ y ∈ (V ⊗W )n+m. Indeed

H(x⊗ y) = Hx⊗ y + x⊗Hy = mx⊗ y + x⊗ ny = (n+m)(x⊗m).

From this observation ∑
m+n=N

Vm ⊗Wn = (V ⊗W )N .

Thus
χV⊗W =

∑
N

dim(V ⊗W )N qN =
∑
N

∑
m+n=N

dim(Vn) dim(Wm)qN

=

(∑
n

dim(Vn)qn

)(∑
m

dim(Wm)qm

)
= χV χW .
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Now

χV (3)⊗V (67) = χV (3) · χV (7) = (q3 + q + q−1 + q−3)(q7 + q5 + q3 + q1 + q−1 + q−3 + q−5 + q−7)

= q10 + 2q8 + 3χ6 + 4q4 + 4q2 + 4 + 4q−2 + 4q−3 + 3q−5 + 2q−7 + q−9.

Our goal is to express this as a sum of characters of V (m) for various m. The polyno-
mials χV (m) are linearly independent so there is a unique way to do this. The complete
decomposition is

χV (3)⊗V (7) = χV (10) + χV (8) + χV (6) + χV (4).

Therefore
V (3)⊗ V (7) ∼= V (10)⊕ V (8)⊕ V (6)⊕ V (4)

In general, to compute V (m)⊗ V (n) we may assume that m > n. Then the answer is

V (m)⊗ V (n) ∼= V (m+ n)⊕ V (m+ n− 2)⊕ · · · ⊕ V (m− n)

In the next exercise I am changing notation and writing M(λ) instead of Z(λ). The
notation has become standardized in the years since Humphrey’s book was written, and
M(λ) is nowadays called a Verma module. Humphreys calls M(λ) a standard cyclic module
and denotes it Z(λ). Verma modules become important later in the book, where following
BGG he uses these infinite dimensional modules to study the finite-dimensional irreducibles.
I am not asking you to do (c), though (c) is not hard if you do the last part of (a).

Section 7 #7. In this exercise we construct certain infinite-dimensional L-modules. Let
λ ∈ F be an arbitrary scalar. Let M(λ) be a vector space over F with countable basis
(v0, v1, v2, · · · ).
(a) Prove that formulas (a)-(c) of Lemma (7.2) define an L-module structure on M(λ), and
that every nonzero L-submodule of M(λ) contains at least one maximal vector.

(b) Suppose λ+ 1 = i is a positive integer. Prove that this induces an L-module homomor-

phism M(µ)
φ−→M(λ), µ = λ− 2i, sending v0 in M(µ) to vi in M(λ).

Solution. The action of x, y, h on M(λ) is as follows. h(vi) = (λ− 2i)vi, x(v0) = 0 while

x(vi) = (λ− i+ 1)vi−1 if i > 1, y(vi) = (i+ 1)vi+1. (2)

To check that this is an L-module (where L = sl2) we have to check three identities

hvi = xyvi − yxvi, 2xvi = hxvi − xhvi, −2yvi = hyvi − yhvi (3)

corresponding to the brackets h = [x, y], 2x = [h, x] and −2y = [h, y]. We will only check
the first one. If i = 0 then yxv0 = 0 while xyvi = xv1 = λv0 so

hv0 = λv0 = xyv0 − yxv0.

On the other hand if i > 0 then

xyvi = (i+ 1)xvi+1 = (i+ 1)(λ− i)vi, yxvi = (λ− i+ 1)yvi−1 = (λ− i+ 1)ivi.
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Subtracting these equations

xyvi − yxvi = ((i+ 1)(λ− i)− (λ− i+ 1)i)vi = (λ− 2i)vi = hvi.

This is one of the identities in (3). For the next

hxvi−xhvi = h(λ−i+1)vi−1−x(λ−2i)vi = (λ−2i+2)(λ−i+1)vi−1−(λ−i+1)(λ−2i)vi−1

= 2(λ− i+ 1)vi−1 = 2xvi.

We leave the list identity in (3) to the reader. This establishes that (3) gives a valid L-module
structure on the vector space with basis v0, v1, · · · .

You are also asked to show that every nonzero submodule of M(λ) contains at least one
maximal vector. Call the submodule in question V . By “maximal vector” Humphreys means
a vector v ∈ V such that xv = 0. If µ ∈ F let Vµ be the H-eigenspace {v ∈ V |Hv = µv}. If
v is any vector, it is impossible that xnv 6= 0 for all n, since x shifts Vµ to Vµ+2, and Vµ = 0
if re(µ) > re(λ). (The vector v may not be an H-eigenvector, but it can be decomposed as a
sum of H-eigenvectors.) Now if v 6= 0 then there is a largest n > 0 such that xnv 6= 0. Then
xnv is a maximal vector.

(b) The “Verma module”M(λ) has the following universal property. Note that for general
semisimple Lie groups, the module M(λ) is constructed by Humphreys in Section 20.3, and
is called Z(λ).

Proposition 3 (Universal Property of M(λ)). Let W be an sl2-module containing a vector
w0 such that xw0 = 0 and hw0 = λw0. Then there is a unique L-module homomorphism
φ : M(λ) −→ W such that φ(v0) = wλ.

Proof. Define wk = 1
k!
ykwλ (k = 0, 1, 2, · · · ). Note that it is possible that wk = 0 for k

sufficiently large, so we do not assert that these are linearly independent. Because W is an
sl2-module,

hwi = xywi − yxwi, 2xwi = hxwi − xhwi, −2yvi = hyvi − yhvi.

Now we claim that the wk satisfy the same relations

h(wi) = (λ− 2i)wi, y(wi) = (i+ 1)wi+1 (4)

xw0 = 0, x(wi) = (λ− i+ 1)wi−1 if i > 1, (5)

as do the vi (compare (2)). Since y shifts the eigenvalue of h by −2, the relation h(wi) =
(λ−2i)wi is clear. Thus (4) is clear but (5) requires proof. We have assumed xw0 = xwλ = 0,
and the other part needs proof.

We will prove this by induction, assuming

x(wi−1) = (λ− i+ 2)wi−2. (6)

(If i = 1, we interpret wi−2 = w−1 to be zero.) Now since W is an sl2-module, we have

hwi−1 = xywi−1 − yxwi−1
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that is,
(λ− 2i+ 2)wi−1 = xiwi − y(λ− i+ 2)wi−2

where we have used (4) and in the second term, we have used (6). Continuing,

(λ− 2i+ 2)wi = xiwi − (λ− i+ 2)(i− 1)wi−1.

Rearranging,

ixwi = ((λ− 2i+ 2) + (λ− i+ 2)(i− 1))wi−1 = i(λ− i+ 1)

and dividing by i proves (5).
Now since the vi are a basis of M(λ), there is a unique linear map φ : M(λ) −→ W

mapping the basis vectors vi ∈ M(λ) to wi. We argue that this is a Lie algebra homomor-
phism. Indeed, the fact that the wi satisfy the relations (4) and (5) and the vi satisfy the
same relations (2) shows that this linear map commutes with the action of h, x, y.

Now we may prove (b). We assume that λ + 1 = i is a positive integer. We want to
define a homomorphism M(µ) −→M(λ), and we will use u0, u1, · · · to denote the standard
basis of M(µ) to avoid a conflict of notation with v0, v1, · · · which are the basis of M(λ).
Let w0 = vi ∈ M(λ). Then hw0 = (λ − 2i)vi = µw0 and the Proposition applies to give a
homomorphism M(µ) −→M(λ).

We have yw0 = yvi = (λ − i + 1)vi−1 = 0 since λ − i + 1 = 0, while hw0 = hvi =
(λ− 2i)vi = µw0. Thus the Proposition applies (with µ instead of λ), and there is indeed a
homomorphism M(µ) −→M(λ) sending u0 to vi.

Section 8 #5. If L is semisimple, H a maximal toral subalgebra, prove that H is self-
normalizing (i.e H = NL(H)).

Solution. Let X ∈ N(H), so ad(X)H ⊂ H. We need to prove that X ∈ H. We recall that

L = H ⊕
⊕
α∈Φ

Lα, Lα = {y ∈ L|ad(h)y = α(h)y for h ∈ H} .

So we may write

X = X0 +
∑
α∈Φ

Xα, X0 ∈ H,Xα ∈ Lα.

We need to show that Xβ = 0 for every root β. Find h ∈ H such that β(h) 6= 0. (For
example we could take h = tβ or hβ.) Then ad(h) preserves the root space decomposition,
and

ad(h)X =
∑
α∈Φ

α(h)Xα.

This is supposed to be in H, so every term must vanish. The coefficient of Xβ is nonzero,
so Xβ = 0. This proves that if X ∈ H.
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Section 8 #8. For sl(n, F ) calculate the root strings and Cartan integers. In particular
prove that all Cartan integers 2(α, β)/(β, β) with α 6= β for sl(n) are 0, 1,−1.

Solution. We will denote by h the diagonal subalgebra of sl(n), which Humphreys denotes
H. The inner product is on h∗, and it is derived from the inner product on h induced by
the Killing form. Thus if λ, µ ∈ h∗ then (λ, µ) = κ(tλ, tµ) where tλ ∈ h is defined by the
requirement that κ(tλ, H) = λ(H) for H ∈ h.

From Exercise 6 in Section 6 (HW3), any two associative bilinear forms on the simple
Lie algebra sl(n, F ) are proportional. We may use the trace bilinear form, which induces a
nondegenerate associative symmetric bilinear form on

h =


 t1

. . .

tn


 , β


 t1

. . .

tn

 ,

 u1

. . .

un


 =

∑
tiui. (7)

This is proportional to the Killing form, and we do not need to compute the constant of
proportionality (though this was computed in HW3). The reason we do not need to know the
constant of proportionality is that the expression 2(α, β)/(β, β) is unchanged if we multiply
the inner product by a constant.

We will identify h∗ with F n, in which λ = (λ1, · · · , λn) ∈ F n corresponds to the functional t1
. . .

tn

 7−→ n∑
i=1

λiti.

Then, since β corresponds to the usual dot product on h by (7), we can also use the dot
product on h∗ ∼= F n, and

(λ, µ) =
n∑
i=1

λiµi. (8)

Although this is not the inner product derived from κ, it is proportional, and we can use it
to compute the Cartan constants. It will be convenient to denote by ei (i = 1, · · · , n) the
standard basis of F n, so ei = (0, · · · , 1, · · · 0), where the 1 is in the i-th position. The roots
Φ are vectors of the form ei − ej where i 6= j. If α = ei − ej then for the inner product (8)
we have (α, α) = 2, so the Cartan number 2(α, β)/(α, α) is just (α, β). It is also clear that
with β 6= ±α the Cartan number 2(α, β)/(α, α) = (α, β) can be only 0, 1 or −1.

Section 8 #11. If (α, β) > 0, prove that α− β ∈ Φ (α, β ∈ Φ). Is the converse true?

Solution. This is proved a little later in the book in Lemma 9.4. Here is another argument
based on Proposition 8.4 (e). This says that if r, q are the largest integers such that β − rα
and β+qα are roots, then β+ iα is a root for all integers i such that −r 6 i 6 q. In the case
at hand, we know that β is a root and so, by Proposition 8.4 (c) is β−β(hα)α = β− 2(α,β)

(α,α)
α.

Note that β(hα) = 2(α,β)
(α,α)

∈ Z by Proposition 8.4 (c), and also 2(α,β)
(α,α)

> 0 since (α, β) is

assumed positive. (The positivity of (α, α) is proved in Section 8.5.) Thus both 0 and
β(hα) > 0 are integers in the interval {i ∈ Z|β − iα ∈ Φ}, and since β(hα) is a positive
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integer this means that 1 ∈ {i ∈ Z|β − iα ∈ Φ}. Therefore β − α is a root, and so is its
negative α− β.

The converse is not true. In the B2 root system, here are the positive roots:

(1,−1), (0, 1), (1, 0), (1, 1).

If we take α = (1, 0) and β(0, 1) then α − β is a root, but α and β are orthogonal. In the
G2 root system, we may find α and β such that α− β is a root but (α, β) < 0.
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