
Math 210C Homework 3

• Section 4 (page 20) #7

• Section 5 (page 24) #1,5

• Section 6 (page 30) #6,7

Section 4 #7 Prove the converse to Theorem 4.3. That is, if L ⊆ gl(V ) is solvable prove
that tr(xy) = 0 for all x ∈ [L,L] and y ∈ L.

Solution. By Lie’s Theorem (Corollary A in Humphreys Section 4.1), we may find a basis of
V such that L consists of upper triangular matrices. Then [L,L] consists of upper triangular
nilpotent matrices. With respect to this basis if x ∈ [L,L] and y ∈ L then xy is upper
triangular and nilpotent, so it has trace zero.

Section 5 #1 Prove that if L is nilpotent, the Killing form of L is identically zero.

Solution. By Corollary 3.3 (Humphreys page 13) we may choose a basis of L such that
ad(L) ⊆ End(L) consists of upper triangular nilpotent matrices. So if x, y ∈ L, then ad(x)
and ad(y) are both upper triangular and nilpotent and so ad(x) ad(y) is also upper triangular
and nilpotent. Therefore κ(x, y) = tr(ad(x) ad(y)) = 0.

Section 5 #5 Let L = sl(2, F ). Compute the basis of L dual to the standard basis, relative
to the Killing form.

Solution. We will use this notation for the standard basis:

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

The matrices of ad(H), ad(E) and ad(F ) with respect to the basis E, H, F were already
considered in HW1:

ad(E) =

 0 −2 0
0 0 1
0 0 0

 , ad(H) =

 2 0 0
0 0 0
0 0 −2

 , ad(F ) =

 0 0 0
−1 0 0
0 2 0


from which we compute κ. For example

κ(E,F ) = tr

 0 −2 0
0 0 1
0 0 0

 0 0 0
−1 0 0
0 2 0

 = tr

 2 0 0
0 2 0
0 0 0

 = 4.

Here are the values:
κ(H,H) = 8, κ(E,F ) = κ(F,E) = 4,

all other combinations such as κ(H,E) are zero. Therefore the dual basis is given by the
following table

basis vector H E F
dual basis vector 1

8
H 1

4
F 1

4
E

1



Section 6 #6 Let L be a simple Lie algebra. Let β(x, y) and γ(x, y) be two symmetric
associative bilinear forms on L. If β, γ are nondegenerate, prove that β and γ are propor-
tional.

[Hint: Use Schur’s Lemma.]

Solution. If V is an L-module, we make V ∗ into a module by

(x · λ)(v) = −λ(x · v), λ ∈ V ∗, v ∈ V. (1)

To check this is a representation pf L, we need to show

[x, y] · λ = x · (y · λ)− y · (x · λ). (2)

Indeed
[x, y]λ(v) = −λ([x, y]v) = −λ(xyv − yxv) =

(xλ)(yv)− (yλ)(xv) = −(yxλ)(v) + (xyλ)(v)

proving (2). Thus V ∗ is a module with the structure (1).
Now let W be another module, and let β : V ×W −→ F be a bilinear map that satisfies

β(xv, w) = −β(v, xw), x ∈ V,w ∈ W,x ∈ L.

Such a form is called invariant .

Example 1. Take V = W = L, which is an L-module through the adjoint representation,
with β an associative bilinear form. Thus x · v means ad(x)v = [x, v] for these modules.
Then the invariance property means

β([x, v], w) = −β(v, [x,w]),

which is equivalent to the form being associative in this example.

Lemma 2. If V and W are irreducible modules for a Lie algebra, and β, γ : V ×W −→ F
are invariant bilinear forms then β, γ are prpoportional.

Proof. Now let β : V ×W −→ F be an invariant bilinear form. Define φ = φβ : V −→ W ∗

by
φβ(x)(w) = β(x,w), x ∈ V,w ∈ W.

We prove that φβ is a homomorphism V −→ W ∗. Indeed

φβ(z · v)(w) = β(z · v, w) = −β(v, z · w) = −φβ(v)(z · w) = (z · φβ(v))(w).

This is true for all w ∈ W , proving that

φ(z · v) = z · φ(v)

as linear functionals on W and therefore φ is a module homomorphism.
Now suppose that V and W are irreducible, so W ∗ is irreducible. Then HomL(V,W ∗) is

one-dimensional by Schur’s Lemma. So if β, γ are invariant bilinear forms then φβ and φγ
are proportional. If φγ = cφβ then clearly γ = cβ, so they are proportional.

To solve the problem, let V = W = L as in Example 1. Because we are assuming that
L is simple, it is irreducible as an L-module: indeed, a submodule would be an ideal, so the
only submodules are 0 and L itself. Therefore associative bilinear forms are proportional by
the Lemma.
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Section 6 #7 It will be seen later that sl(n, F ) is actually simple. Assuming this and using
Exercise 6, prove that the Killing form κ on sl(n, F ) is related to the ordinary trace bilinear
form by κ(x, y) = 2ntr(xy).

Solution. Let L = sl(n, F ). By the previous exercise, the two associative bilinear forms in
question are equivalent. Let τ : L×L −→ F be the trace bilinear form τ(x, y) = tr(xy). To
compute the constant of proportionality, let us take

H =


1
−1

0
. . .


and compute κ(H,H). We will denote by Ei,j the elementary matrix with an i in the i-
th position, zeros elsewhere. The nonzero eigenvalues of ad(H) are 2, 1 and −1, and the
eigenspaces look like this. We will take n = 5 in laying out the eigenspaces for definiteness.

Eigenvalue Eigenspace (n = 5) Eigenspace dimension

2


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 1

−2


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 1

1


0 0 ∗ ∗ ∗
0 0 0 0 0
0 ∗ 0 0 0
0 ∗ 0 0 0
0 ∗ 0 0 0

 2(n− 2)

−1


0 0 0 0 0
0 0 ∗ ∗ ∗
∗ 0 0 0 0
∗ 0 0 0 0
∗ 0 0 0 0

 2(n− 2)

From this data

κ(H,H) = tr(ad(H)2)1× 22 + 1× (−2)2 + 2(n− 2)× 12 + 2(n− 2)× (−1)2 = 4n.

On the other hand τ(H,H) = tr(H2) = 2. So the constant of proportionality must be 2n.
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