Math 210C Homework 3

e Section 4 (page 20) #7

e Section 5 (page 24) #1,5

e Section 6 (page 30) #6,7
Section 4 #7 Prove the converse to Theorem 4.3. That is, if L C gl(V) is solvable prove
that tr(zy) =0 for all x € [L, L] and y € L.

Solution. By Lie’s Theorem (Corollary A in Humphreys Section 4.1), we may find a basis of
V such that L consists of upper triangular matrices. Then [L, L] consists of upper triangular
nilpotent matrices. With respect to this basis if € [L,L] and y € L then xy is upper
triangular and nilpotent, so it has trace zero.

Section 5 #1 Prove that if L is nilpotent, the Killing form of L is identically zero.

Solution. By Corollary 3.3 (Humphreys page 13) we may choose a basis of L such that
ad(L) C End(L) consists of upper triangular nilpotent matrices. So if z,y € L, then ad(z)
and ad(y) are both upper triangular and nilpotent and so ad(z) ad(y) is also upper triangular
and nilpotent. Therefore x(z,y) = tr(ad(z) ad(y)) = 0.

Section 5 #5 Let L = s[(2, F'). Compute the basis of L dual to the standard basis, relative
to the Killing form.

Solution. We will use this notation for the standard basis:

(50 () - (00)

The matrices of ad(H), ad(E) and ad(F') with respect to the basis £, H, F were already
considered in HW1:

0 -2 0 20 0 0 00
ad(E)=10 0 1], ad(H)=10 0 0 , ad(F)=1 -1 0 0
0 0 0 0 0 —2 0 20
from which we compute k. For example
0 -2 0 0 00 2 00
k(E,F)=tr 0 0 1 -1 0 0 =tr{ 0 2 0 | =4
0 0 0 0 20 000

Here are the values:
k(H,H) =38, K(E,F)=kr(F, E) =4,

all other combinations such as k(H, E) are zero. Therefore the dual basis is given by the
following table

basis vector H |F | F
dual basis vector | = H }lF iE

1
8




Section 6 #6 Let L be a simple Lie algebra. Let [(z,y) and y(z,y) be two symmetric
associative bilinear forms on L. If 3,~ are nondegenerate, prove that g and ~+ are propor-
tional.

[Hint: Use Schur’s Lemma. |

Solution. If V is an L-module, we make V* into a module by

(- A)(v) = =Xz - v), AeViveV (1)
To check this is a representation pf L, we need to show
[zyl- A=a-(y-A)—y-(z-A) (2)

Indeed
[z, y]A\(v) = =A([z,y]v) = =A(zyv — yzv) =
(@A) (yv) — (yA)(2v) = —(yzA)(v) + (zyA)(v)
proving (2). Thus V* is a module with the structure (1).
Now let W be another module, and let 5 : V x W — F' be a bilinear map that satisfies
Bxv,w) = —p(v, zw), reV,iweWxe L.
Such a form is called invariant.

Example 1. Toke V = W = L, which is an L-module through the adjoint representation,
with B an associative bilinear form. Thus x - v means ad(x)v = [z,v] for these modules.
Then the invariance property means

B([xvaw) = —B(v, [x,w]),
which 1s equivalent to the form being associative in this example.

Lemma 2. IfV and W are irreducible modules for a Lie algebra, and B,~v:V x W — F
are invariant bilinear forms then (3,7 are prpoportional.

Proof. Now let B : V x W — F be an invariant bilinear form. Define ¢ = ¢5: V — W*
by

¢p(x)(w) = B(z,w), xeViweW.
We prove that ¢g is a homomorphism V' — W*. Indeed

Ps(z - v)(w) = Bz - v,w) = =B(v,z - w) = =Ps(v)(z - w) = (- Ps(v))(w).
This is true for all w € W, proving that

¢(z-v) =z 9(v)
as linear functionals on W and therefore ¢ is a module homomorphism.
Now suppose that V' and W are irreducible, so W* is irreducible. Then Hom/ (V, W*) is
one-dimensional by Schur’s Lemma. So if 3,~ are invariant bilinear forms then ¢z and ¢,
are proportional. If ¢, = c¢g then clearly v = ¢, so they are proportional. O

To solve the problem, let V=W = L as in Example 1. Because we are assuming that
L is simple, it is irreducible as an L-module: indeed, a submodule would be an ideal, so the
only submodules are 0 and L itself. Therefore associative bilinear forms are proportional by
the Lemma.



Section 6 #7 It will be seen later that sl(n, F') is actually simple. Assuming this and using
Exercise 6, prove that the Killing form x on sl(n, F) is related to the ordinary trace bilinear
form by k(z,y) = 2ntr(zy).

Solution. Let L = sl(n, F'). By the previous exercise, the two associative bilinear forms in
question are equivalent. Let 7: L x L — F be the trace bilinear form 7(z,y) = tr(zy). To
compute the constant of proportionality, let us take

and compute x(H,H). We will denote by E;; the elementary matrix with an ¢ in the i-
th position, zeros elsewhere. The nonzero eigenvalues of ad(H) are 2,1 and —1, and the
eigenspaces look like this. We will take n = 5 in laying out the eigenspaces for definiteness.

Eigenvalue | Eigenspace (n = 5) | Eigenspace dimension
01 00O
000O0O

2 00 00O 1
000O0©O
0 00O0O
000O0O
100 00

-2 000O0O 1
000O0O
000O0©O
0 0 % x x
00000

1 0« 000 2(n — 2)
0« 000
0« 000
00000
0 0 x x x

-1 *x 00 0 0 2(n—2)
* 00 0 0
*x 00 0 0

From this data
k(H,H) =tr(ad(H)*)1 x 22 + 1 x (=2)*+2(n —2) x 1 +2(n — 2) x (=1)* = 4n.

On the other hand 7(H, H) = tr(H?) = 2. So the constant of proportionality must be 2n.



