
Math 210C Homework 2 Solutions
• Humphreys Section 2 (page 9) #1,7

• Section 3 (page 14) #1,2,6

• Section 4 (page 20) #1,5

Problem 1: Humphreys Section 2 #1. Prove that the set of all inner derivations ad(x),
x ∈ L is an ideal of Der(L).

Note: Humphreys uses this notation: t(n, F ) is the subalgebra of gl(n, F ) consisting of upper
triangular matrices, n(n, F ) =strictly upper triangular matrices, and d(n, F ) =diagonal
matrices. In the lectures I am using the following notations, which are more widely used.

Humphreys Us Common name
t(n, F ) b “Borel subalgebra”
n(n, F ) n or n+

d(n, F ) h “Cartan subalgebra”

Problem 2: Section 2 #7. Prove that t(n, F ) and d(n, F ) are self-normalizing subalgebras
of gl(n, F ), whereas n(n, F ) has normalizer t(n, F ).

Solution. Let g = gl(n, F ). We will denote by Eij the elementary matrix with 1 in the i, j
position and 0’s elsewhere.

First let us find the normalizer of t(n, F ), which we denote b. The normalizer is by
definition

N(b) = {X ∈ g| ad(X)b ⊆ b}.

Clearly b ⊆ N(b). To prove the converse inclusion, let X ∈ N(b). We want to show that X
is upper triangular. Suppose on the contrary that a matrix entry Xij 6= 0 with i > j. Let
Y = Eii ∈ b. Then

[X, Y ] = XY − Y X

It is easy to see that Y X is the i-th row of X, by which we mean, the matrix that has the
same i-th row as X and 0’s in every other row. So [X, Y ] is the i-th row of X minus the
i-th column. In particular the i, j entry of [X, Y ] is −Xij 6= 0. As Y ∈ b this proves that
X /∈ N(b). We have proved that N(b) = b.

Now let h denote d(n, F ) be the diagonal subalgebra. We claim that N(h) = h. Suppose
that X ∈ N(h). If X /∈ h then Xij 6= 0 for some i 6= j. Let H = diag(λ1, · · · , λn) ∈ h. It
is easy to see that [X,H]ij = (λj − λi)Xij, so if we choose λi 6= λj then [X,H] /∈ h. This
means that X /∈ N(h). We have then proved N(h) = h.

It is easy to check that h ⊆ N(n), so b = n⊕h ⊆ N(n). To prove that N(n) ⊆ b, suppose
that X /∈ b, so that Xij 6= 0 for some i > j. Let Z = Eji. Then Z ∈ n but [X,Z] /∈ n since
it has nonzero diagonal entries in the i and j positions, so Z /∈ N(n).
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Problem 3: Section 3 #1. Let I be an ideal of L. Then each member of the derived
series or descending central series of I is an ideal of L.

Solution. Let us prove the following fact.

Lemma 1. Let I, J be ideals of L. Then [I, J ] is an ideal of L.

Proof. By definition, [I, J ] is the ideal generated by commutators [x, y] with x ∈ I and y ∈ J .
To prove this is an ideal, with z ∈ L we have

[z, [x, y]] = [[z, x], y] + [x, [z, y]] ∈ [I, J ]

since [z, x] ∈ I and [z, y] ∈ J . Thus [L, [I, J ]] ⊆ [I, J ] proving that [I, J ] is an ideal.

Now the derived series is

L(0) = L, L(1) = [L(0), L(0)], L(2) = [L(1), L(1)], (1)

and applying the Lemma repeatedly, each term is an ideal. The descending central series is
handled by the same Lemma.

Problem 4: Section 3 #2. Prove that L is solvable if and only if there exists a chain of
subalgebras L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lk = 0 such that Li+1 is an ideal of Li and such
that each quotient Li/Li+1 is abelian.

Solution. Humphreys defines L to be solvable if the derived series (1) terminates at 0, that
is, L(k) = 0 for sufficiently large k.

Lemma 2. If L is a Lie algebra and M an ideal, then L/M is abelian if and only if M ⊃
[L,L].

Proof. Let x, y ∈ L and let x, y be the images in L/M . Clearly [x, y] ∈ M if and only if
[x, y] = 0 in L/M . From this, the conclusion is obvious.

With the Lemma in mind, if L is solvable, we may take Li = L(i) and we see that the
condition stated in the problem is satisfied. Conversely, if the condition is satisfied, then since
L/L1 is abelian, we must have L1 ⊃ [L,L] = L(1), and repeating this reasoning inductively
we have Li ⊃ L(i) for all i. We are assuming Lk = 0, so L(k) = 0 and so L is solvable.

Problem 5: Section 3 #6. Prove that a sum of two nilpotent ideals of a Lie algebra L is
again a nilpotent ideal. Therefore L possesses a unique maximal nilpotent ideal. (Humphreys
asks you to determine this for particular algebras but you may skip this part.)
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Solution. Let I and J be nilpotent ideals. We will denote by Ik the terms of the descending
central series, so I0 = I and [I, Ik] = Ik+1. Let

Fk = Ik + (Ik−1 ∩ J) + (Ik−2 ∩ J2) ∩ · · · ∩ Jk.

We will argue that (I + J)k ⊆ Fk. If k = 1, this true since clearly I + J ⊆ F1. Since
[I, Ik] ⊆ Ik+1, [I, Ik−i ∩ J i] ⊆ Ik+1−i ∩ J i and [I, J i] ⊆ I ∩ J i we have [I, Fk] ⊆ Fk+1.
Similarly [J, Fk] ⊆ Fk+1. Thus [I + J, F k] ⊆ F k+1. Our claim that (I + J)k then follows by
induction.

Since Ik = Jk = 0 when k > N , we have Fk = 0 if k > 2N , proving that (I + J)k = 0.
Hence I + J is a nilpotent ideal.

Now let I be a maximal nilpotent ideal. Then I contains every nilpotent ideal J , since
I + J is a nilpotent ideal, hence I + J = I by the maximality of I.

Problem 6: Section 4 #1. Let L = sl(V ). Use Lie’s Theorem to prove that Rad(L) =
Z(L); conclude that L is semisimple. (See book for hint.)

Solution. Remember that Rad(L) is the maximal solvable ideal. By Lie’s theorem Rad(L)
stabilizes a flag V = Vn ⊃ Vn−1 ⊃ · · · ⊃ V0 = 0 where n = dim(V ) and dim(Vi) = i.
Choosing a basis v1, · · · , vn so that vi ∈ Vi − Vi−1 with respect to this basis Rad(L) consists
of upper triangular matrices. We will identify L = sl(V ) = sl(n, F ) via this basis.

Now let us show that any element of Rad(L) is actually diagonal. There are different
ways to proceed here, but we will use an automorphism θ : sl(n) −→ sl(n) defined by
θ(X) = −tX. It is easy to check that this is an automorphism. Any automorphism of L
must take Rad(L) −→ Rad(L), so Rad(L) also consists of lower triangular matrices. In
conclusion, every element of L is a diagonal matrix.

Now ifH ∈ Rad(L) we will show thatH is a scalar matrix. Indeed, letH = diag(a1, · · · , an).
Then [H,Eij] ∈ Rad(L) since Rad(L) is an ideal. But [H,Eij] = (ai − aj)Eij. This must be
diagonal since we have already proved that every element of Rad(L) is diagonal, so ai = aj.
We conclude that H ∈ Z(L), the space of scalar matrices.

We have proved Rad(L) ⊆ Z(L). The other inclusion is clear since Z(L) is a solvable
ideal.

Problem 7: Section 4 #5. If x, y ∈ End(V ) commute, prove that (x+ y)s = xs + ys and
(x + y)n = xn + yn. Show by example that this can fail if x, y fail to commute. (See book
for hint.)

Solution. Note that x commutes with ys and yn since it commutes with y and ys, yn are
polynomials in y. Similarly y commutes with xs and xn, and indeed x, y, xs, xn, ys, yn all
commute.

Lemma 3. (i) If A and B are commuting semisimple matrices, then A+B is also semisimple.
(ii) If A and B are commuting nilpotent matrices, then A+B is also nilpotent.
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Proof. (i) We may extend the ground field to an algebraically closure, so A is diagonalizable.
Every eigenspace of A is invariant under B, from which it follows that A and B can be
simultaneously diagonalized. Then it is clear that A+B is diagonalizable.

(ii) If An = Bm = 0 then by the binomial theorem, which applies since A and B commute,
we have (A+B)n+m = 0.

Now xs + ys is semisimple by the Lemma, and xn + yn is nilpotent. They commute, and
their sum is x+ y, so by the uniqueness in Proposition 4.2 (a), we have

(x+ y)s = xs + ys, (x+ y)n = xn + yn.
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