
Math 210C Homework 1 Solutions
• Humphreys Section 1 (pages 5-6) # 3,8,10 (B2 ∼= C2 only).

Note: Problem 10 may be difficult at this stage in the book. As an alternative, you can
substitute any other problem from Chapter 1.

Section 1 Problem 3. Let x =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, y =

(
0 0
1 0

)
be an ordered basis

for sl(2, F ). Compute the matrices of ad(h), ad(x) and ad(y) relative to this basis.

Solution. We have

ad(x)x = [x, x] = 0, ad(x)h = [x, h] = −2x, ad(x)y = h,

so with respect to this basis the matrix of ad(x) is

ad(x) =

 0 −2 0
0 0 1
0 0 0


and similarly

ad(h) =

 2
0
−2

 , ad(y) =

 0 0 0
−1 0 0
0 2 0

 .

Section 1 Problem 8. Verify the stated dimension 2`2 − ` of D`.

Solution. By definition, this Lie algebra (also denoted so(2`)) consists of matrices X that satisfy
XJ = −J(tX) where

J =

(
I`

I`

)
.

It is worth noting that if X ∈ D` then so is tX. This may be seen by conjugating the identity
XJ = −J(tX) by J and rearranging to obtain tXJ = −JX.

We write X in block form as

(
A B
C D

)
. The condition is that

(
A B
C D

)(
I`

I`

)
= −

(
I`

I`

)(
tA tC
tB tD

)
,

or (
B A
D C

)
= −

(
tB tD
tA tC

)
.

This gives us the identities B = −tB, C = −tC, and D = −tA. There are l2 entries in A,
which determine the entries in D. Since B and C are skew-symmetric, they each contain 1

2`(`− 1)
independent entries. The dimension of the space of solutions is

1

2
`(`− 1) +

1

2
`(`− 1) + `2 = 2`2 − `.
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Section 1, Problem 10. For small values of `, isomorphisms occur among certain of the classical
algebras. Show that B2 ∼= C2.

As I mentioned, this may be a hard problem placed so early in the book. I will give two solutions,
using different ideas. One solution uses roots to figure out the correspondence. The other uses the
exterior power of a representation.

Solution 1. We will try to solve this systematically, emphasizing ideas that will be important
later. We will assume that an isomorphism φ : C2 −→ B2 solution exists, and obtain formulas for it
on a basis of C2. Once one has formulas for φ, one may check that it actually is an isomorphism,
but we will omit this verification.

Humphreys defines C` to be the Lie algebra of X ∈ gl(4) such that

JX = −tXJ, J =

(
0 I`
−I` 0

)
.

Note: I am writing tX instead of Xt for the transpose of a matrix. The matrix I am denoting J
is denoted s in Humphreys.

Let us write X as

(
A B
C D

)
where A,B,C,D are ` × ` block matrices. Then the condition

becomes (
0 I`
−I` 0

)(
A B
C D

)
= −

(
tA tC
tB tD

)(
0 I`
−I` 0

)
.

Thus (
C D
−A −B

)
=

(
tC −tA
tD −tB

)
,

so

X =

(
A B
C −tA

)
, B,C symmetric.

Thus if ` = 2, we obtain the following form for a typical element the Lie algebra C2:
a b t u
c d u v
x y −a −c
y z −b −d

 .

On the other hand, Humphreys defines B` to be the Lie subalgebra of gl(5) such that

sX = −tXs, s =

 1
I`

I`

 .

This leads to the following form for X. 1
I`

I`

 a B1 B2

C1 M N
C2 P Q

 = −

 a Bt
1 Bt

2

Bt
1 M t P t

Bt
2 N t Qt

 1
I`

I`


 a B1 B2

C2 P Q
C1 M N

 = −

 a Bt
2 Bt

1

Bt
1 P t M t

Bt
2 Qt N t


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X =

 0 B1 B2

−tB2 M N
−tB1 P −tM

 , N, P skew-symmetric.

Note that a is a 1× 1 matrix, B1 and B2 are 1× ` matrices and M,N,P are `× `.
For ` = 2, by a similar computation, we obtain the following form for a typical form for the Lie

algebra of B2: 
0 α β γ δ
−γ ε η 0 λ
−δ ζ θ −λ 0
−α 0 µ −ε −ζ
−β −µ 0 −η −θ

 .

To construct an isomorphism, we must make some choices. For although there is essentially only
one isomorphism φ : C2 −→ B2, “essentially” means unique up to conjugation. So given one
isomorphism, we may conjugate it by any element of the symplectic group Sp(4) to obtain another.
Thus to pin down one isomorphism, we must make some choices.

The first choice is that the diagonal subalgebras (called Cartan subalgebras later in the book)
correspond. These are the abelian Lie algebras:

h =




a
d
−a

−d


 , t =




0

ε
θ
−ε

−θ


 (1)

So we hope that

φ


a

d
−a

−d

 =


0

ε
θ
−ε

−θ


for some ε, θ, but we need to figure out how ε, θ depend on a and d. To figure this out, let us
decompose C2 into one-dimensional eigenspaces under ad(h).

Definition 1. Let g be a Lie algebra and h an abelian subalgebra. A root of g with respect to h is
a nonzero linear functional α on h such that there exists a vector Xα such that

ad(H)Xα = α(H)Xα for all H ∈ h.

The set of roots is called the root system.

So with h ⊂ C2 and t ⊂ B2 as in (1) let us compute the root systems.

X1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 .

3



We compute

ad(H)X1 = [H,X1] = (a− d)X1, H =


a

d
−a

−d

 , (2)

so this an eigenvector for the linear functional H 7→ a − d. Such linear functionals of the Cartan
subalgebra (called roots) are useful for solving this particular problem. We find the following ad(h)
eigenvectors:

Xα


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


α(H) a− d 2d a+ d 2a

Xα


0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0




0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


α(H) −(a− d) −2d −a− d −2a

Hence the root system of C2 is the set of roots

Φ (C2) = {a− d, 2d, a+ d, 2a,−(a− d),−2d, 2a,−(a+ d)}

which are all linear functionals on the matrix H ∈ h in (2). Note that C2 is the direct sum of h and
the eight one-dimensional vectors Xα (α ∈ Φ (C2)).

Now we perform the same calculation for B2 with respect to the Cartan subalgebra t. Denote

T =


0

ε
θ
−ε

−θ

 ∈ t.

We are now looking for nonzero linear functions β ∈ t∗ (roots) and vectors Yβ ∈ B2 such that

[T, Yβ] = β(T )Yβ, T ∈ t.

We find the following roots:
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Yβ


0 0 0 0 1
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0




0 0 0 −1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0


β(T ) θ ε− θ ε ε+ θ

Yβ


0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 0 0




0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0


β(T ) −θ −(ε− θ) −ε −(ε+ θ)

Thus the root system is

Φ (B2) = {θ, ε− θ, ε, ε+ θ,−θ,−(ε− θ),−ε,−(ε+ θ)}.

Now we can start to construct the isomorphism φ : C2 −→ B2. We have assumed that φ will take
the Cartan subalgebra h of C2 to the Cartan subalgebra t of B2. The root systems must correspond
under this correspondence. It will be helpful to visualize them.

a− d

2d

a+ d

2a

−a+ d

−2d

−2a

−a− d
ε− θ

θ ε+ θ

ε

−ε+ θ

−θ

−ε

−ε− θ

We can map h −→ t in such a way that the roots a − d and 2d correspond to θ and ε − θ.
Solving for ε we have

θ = a− d, ε = a+ d,

so on h, we see that φ must be the map

φ


a

d
−a

−d

 =


0

a+ d
a− d

−a− d
−a+ d

 . (3)

Once we see that we can map the Cartan subalgebras isomorphically so that the roots corre-
spond, it follows that B2 ∼= C2 from Theorem 14.2 of Humphreys (page 75). However since this is
later in the book, we will give some more details.

Note that the C2 Lie algebra is spanned by h and the eight root vectors Xα (α ∈ Φ (C2)). We
have already determined φ on h by (3). So we need to compute φ(Xα). We can almost do this
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immediately. Indeed, if α is a root of C2 and β is the corresponding root of B2 we need φ(Xα) = cαYβ
for some constant cα.

The constants cα need to be chosen carefully, but we do have some freedom to adjust them,
since we may conjugate φ by a matrix of the form

u
v

u−1

v−1

 ∈ Sp(4),

since this conjugation is easily seen to be an automorphism of C2. Using this flexibility, we can
arrange that cα = 1 for two roots. We choose to make ca−d = c2d = 1. Thus

φ(Xa−d) = Yθ, φ(X2d) = Yε−θ. (4)

Assuming this, we will deduce the following values for φ on the Xα:

X Xa−d X2d Xa+d X2a X−(a−d) X−2d X−(a+d) X−2a

φ(X) Yθ Yε−θ Yε
1
2Yε+θ 2Y−θ Y−(ε−θ) 2Y−ε 2Y−(ε+θ)

The constants cα that appear here (for example c2a = 1
2) were arrived at using commutation

relations and checked with a computer program. For example, find that

[Xa−d, X2d] = Xa+d

and since we have adjusted φ so that φ(Xa−d) = Yθ, φ(X2d) = Yε−θ we must have

φ(Xa+d) = [Yθ, Yε−θ] = Yε.

Second Solution. Let V be a symplectic vector space over a field F of characteristic 6= 2. This
means that V is a vector space equipped with a nondegenerate bilinear form β : V ×V −→ F such
that β(x, y) = −β(y, x). This solution will be a little sketchy. We will construct a homomorphism
from sp(2n, F ) to an odd orthogonal Lie algebra oα(N,F ) with respect a symmetric bilinear form
α on an N = n(2n − 1) dimensional vector space. Then we will show that actually the image of
this homomorphism factors through a slightly smaller orthogonal algebra oα(N − 1, F ). If n = 2
then N − 1 = 5, so this homomorphism maps C2 = sp(4) to B2 = so(5), and in this case the
homomorphism is an isomorphism.

We will not check that the orthogonal algebra oα(N − 1, F ) is the version stabilizes the “split”
symmetric bilinear form with matrix  1

I2
I2

 ,

so in this respect this solution will be incomplete. Over an algebraically closed field, any symmetric
bilinear form is equivalent to a split form, so the proof is complete over C. But the first solution
shows that this result is true over a general field, and certainly with a bit more work that could be
proved in this second solution.

Let W = V ∧ V be the exterior square. This has the following universal property : if φ :
V × V −→ U is any skew-symmetric bilinear map to a vector space W , then there exists a unique
linear map Φ : V ∧ V −→ U such that φ(x, y) = Φ(x ∧ y). (See Lang’s Algebra page 732.)
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Lemma 2. There is a nondegenerate symmetric bilinear map

α : W ×W −→ F

such that
α(w ∧ x, y ∧ z) = β(w, y)β(x, z)− β(w, z)β(x, y). (5)

Proof. Let y, z ∈ V . Define αy,z : V × V −→ F by

αy,z(w, x) = β(x, y)β(w, z)− β(x, z)β(w, y).

This map is bilinear and skew-symmetric, so by the universal property of the exterior square it
factors through W = V ∧ V . That is, there exists a unique linear map γy,z : W −→ F such that
αy,z(w, x) = γy,z(w ∧ x). Then the map V × V −→ W ∗ defined by y, z 7→ γy,z is bilinear and
skew-symmetric, so another application of the universal property of the exterior square shows there
is a linear map λ : W −→W ∗ such that γy,z = λ(y ∧ z). Define α : W ×W −→ F by

α(ξ, η) = λ(η)ξ.

Then this map is bilinear and satisfies (5). The form α is symmetric since, using the fact that β is
skew-symmetric, the right-hand side of (5) is unchanged on interchanging w ∧ x with y ∧ z.

We need to show that α is nondegenerate. We will show that if τ : W −→ F is any linear
functional, then there exists η ∈ W such that τ(ξ) = α(ξ, η). Consider the bilinear form θ :
V × V −→ F defined by θ(w, x) = τ(w ∧ x). There exist φi, ψi (i = 1, · · ·n) such that

θ(w, x) =
n∑
i=1

φi(w)ψi(x),

since any bilinear form on V has this form. Then since β is nondegenerate, we may find elements
yi, zi ∈ V such that φi(w) = β(w, yi) and ψi(x) = β(x, zi). Then

τ(w ∧ x) =
∑

β(w, yi)βi(x, zi).

On the other hand
τ(w ∧ x) = −τ(x ∧ w) = −

∑
β(x, yi)βi(w, zi).

Adding these two equations

2τ(w ∧ x) = β(w, yi)βi(x, zi)− β(x, yi)βi(w, zi) =
∑
i

α(w ∧ x, yi ∧ zi).

Thus with η = 1
2

∑
yi ∧ zi we see that τ(ξ) = α(ξ, η). Because τ was an arbitrary element of W ∗,

this shows that α is nondegenerate.

Let
spβ(V ) = {X ∈ End(V )|β(Xx, y) = −β(x,Xy)}

and
oα(W ) = {X ∈ End(W )|α(Xξ, η) = −α(x,Xη)}

be the symplectic and orthogonal Lie algebras associated with the forms β and α. We define an
action of Spβ(V ) on W by X(t ∧ u) = Xt ∧ u+ t ∧Xu.
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Lemma 3. The form α is invariant under X ∈ (V ). Thus the endomorphism of W induced by X
is in oα(W ).

Proof. Indeed
α(X(w ∧ x), y ∧ z) = α(Xw ∧ x, y ∧ z) + α(w ∧Xx, y ∧ z) =

β(Xw, y)β(x, z)− β(Xw, z)β(x, y) + β(w, y)β(Xx, z)− β(w, z)β(Xx, y) =

−β(w,Xy)β(x, z) + β(w,Xz)β(x, y)− β(w, y)β(x,Xz) + β(w, z)β(x,Xy) =

−α(w ∧ x,Xy ∧ z + y ∧Xz) = −α(w ∧ x,X(y ∧ z)).

Now there exists a vector ξ0 ∈ W such that β(x, y) = α(x ∧ y, ξ0). Indeed, since β is skew-
symmetric, there exists a linear functional on W = V × V that maps x ∧ y 7→ β(x, y). Then since
α is nondegenerate this linear functional can be realized as the inner product with a vector ξ0.

Lemma 4. We have Xξ0 = 0 for all X ∈ sp(4).

Proof. It is enough to show 〈x ∧ y,Xξ0〉 = 0 for x, y ∈ V . We have

〈x ∧ y,Xξ0〉 = −〈X(x ∧ y), ξ0〉 = −〈Xx ∧ y, ξ0〉 − 〈x ∧Xy, ξ0〉 =

−β(Xx, y)− β(x,Xy) = 0.

Now let W0 be the orthogonal complement of ξ0 in W , a subspace of codimension 1. Then W0

is invariant under the action of sp(4), and the symmetric bilinear form α restricted to W0 remains
nondegenerate. It remains to be checked that the form α restricted to W0 is “split,” meaning
equivalent to the form  1

I2
I2


used to define B2. We omit this, but at least if the ground field F is algebraically closed, any two
nondegenerate symmetric bilinear forms are equivalent.
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