Homework 5 Solutions

May 27, 2022

Problem 1: Section 9 (page 45) #8. Compute the root strings in Go to verify the
relation r — ¢ = (5, a).

Note: The notation (3, «) is introduced on page 42 of Humphreys. It means
_ 2(B.0)

(@, )

(8, ) = B(ha) = (", B)

where oV = (jf;). Note that if we identify h with h* using the inner product (, ), then

a¥ € b* is really the same as h, € h. Either one is called a coroot.

Solution. Let aq be the short simple root and «s the long simple root of GG5. Thus the roots
are {faq, £ag, (o + ), £(20q + ), £(3a + ), £(3a; + 2a) }. We will only compute
the root strings for ar; and . This is sufficient to verify the relation r — ¢ = (3, &) because
the Weyl group action permutes the roots and root strings, and can map any root a in Gy
to either a; or ap. We may take

a1 = (0,1,—1), Qg = (1,—2,1)

embedded in {(t1,t,%3)|>_t; = 0}. The restriction of the usual inner product on R? to this
hyperplane



First let us consider the «y root strings.

B a1-root string rlql|{(B,aq) | {B,aq) =7 —¢q
a {—Oél, O, Oél} 2102 v
Qo {ag, as + ag, as + 21, as + 31 } 0[3|—-3 v
g + o {ag, ag + ag, as + 21, as + 3 } 112 -1 v
s + 20 {ag, as + ay, as + 21, as + 30 } 21111 v
a2+3a1 {ag,ag+a1,a2—l—2a1,a2—l—3a1} 3103 v
20[2 + 3041 {2&2 + 30(3} 0(0]0 v
—Q7 {—(1/1, 0, 061} 012]-2 v
— Qv {—ag, —a; —ay, =201 —ay, —3a; —an} | 3|03 v
— (g + aq) {—ag,—a1 — g, =201 —ap, —3a; — e} | 2|11 v
—(g +201) | {—ag,—a; —ag, —2a; —ag, —3a3 —an} | 12| —1 v
—(ag +30q) | {—a2,—a; —ag, —2a; — ay, —3a; —ag} |0 3| =3 v
— (209 + 3011) | {—2a2 — 33} 0/01]0 v
Next here are the ay root strings:

I6; Qo-ToOt string rq|(B,0q) | (B,on) =1 —¢q

(0%} {Oél,Oé1+062} 0/1]—-1 v

0%) {042, 0, —042} 210]2 v

Qg + 0 {al,Oé2+Oél} 1101 v

s + 20 {ag + 201} 0(0/0 v

s + 3y {ag + 3a1, 209 + 30 } 0/1] -1 v

20[2 + 30&1 {O[Q + 3041, 20&2 + 3&1} 110 -1 v

—o {—ai, —a; — as} 1101 v

— Q9 {Oég, 0, —062} 02| -2 v

—(cvg + 1) {—ai, —a; —ag} 0[1] -1 v

—(g +20) | {—a2 — 201} 0(0/0 v

—(ag +30q) | {—as —3ay,—2a5 —3a1} [ 101 v

—(2@2 + 30(1) {—&2 — 3&1, —20&2 — 30(1} 0/1]-1 v

Problem 2: Section 10 (page 54) #4. Verify the Corollary of Lemma 10.2A directly for

Go.

The Corollary in question states:

Corollary 1. Every 8 € ®* can be written in the form oy +. ..+ g, a; € A, not necessarily
distinct, in such a way that each partial sum oy + ...+ o is a root.

We will modify the notation of the corollary by using «; to denote the simple roots. (For
Humphreys, A is the set of simple roots.)
Let us start by writing the highest root 3a; + 2a4 as

(a1) + (a2) + (1) + (1) + (1) + ().
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Now we note that the sum of every initial segment of this sum is a positive root. This verifies
the assertion for 8 = 31 + 2. But in fact it verifies it for all positive roots, since we can
write any positive root 3 as one of these partial sums, so an initial segment of the sequence
{ai, ag, ai, ai, as, a;} will solve the problem for 5.

Problem 3: Section 10 (page 54) #6. Define a function sn : W — {£1} by sn(o) =
(—1)%®). Prove that sn is a homomorphism.

Solution. By Lemma A in Section 10.3 ¢(0) = n(o) where n(o) is number of 5 € &7
such that o(5) € ®~. Thus
(o) = |2~ No(@T)]. (1)
Now
Lemma 1. We have o) fo() N
B o)+1 ifo SRR
toog) = { o) =1 ifo(B) e

Proof. Note that o5(®)" = &T\{f} U {—F} by Lemma B in Section 10.2, since the simple
reflection o interchanges f € ®* and —f € @, but otherwise permutes the positive roots.

Using (1), L(o0g) = [~ Na(@T\{} U{-F})], or
loog) =127 N (c@"\{o(8)} U{-a(B)})]
If o(5) € T this means
(005) = |(® 100 U {—a(3)}] = (o) + 1.
On the other hand if o(8) € &,
l(oog) = (2~ No®")\{o(B)} = (o) — 1.
[

In both cases sgn(coz) = —sgn(o). Therefore if o is written as a product of k£ simple
reflections, sgn(o) = (—1)*. From this it is clear that sgn(o7) = sgn(o) sgn(7).

Problem 4: Section 12 (page 68) #5. In constructing C, would it be correct to charac-
terize ® as the set of all vectors in I of squared length 2 or 47 Explain.

Solution. This is correct if ¢ < 3. However if ¢ > 4, it fails because we have vectors
such as (1,1,1,1) in I = Z* which has length squared equal to 4, but is not a root.

Problem 5: Section 13 (page 71) #2. Show by example (e.g., for As) that A ¢ AT,
a€ A, N\—a & AT is possible.



Solution. We can always take A = a so that A — a = 0 is a dominant weight, because
only for type A; are the simple roots themselves dominant.

Problem 6: Section 13 (page 71) #9. Let A € A*. Show that o(A+ p) — p is dominant
only for o = 1. (I am writing p for half the sum of the positive roots instead of d.)

Solution: We will deduce this from Lemma A in Section 13.2, on page 68. Assume that
A is dominant and o(A + p) — p is dominant. Then A + p and o(\ + p) are both strongly
dominant. Therefore the two parts to the Lemma show that A + p = o(A + p) (since both
are dominant elements of the same Weyl group orbit, and that o = 1 (since A+ p is strongly
dominant).



