Math 210C Homework 5

- Section 9 (p.45) # 2,6,
- Section 10 (p.54) # 2,6.

Section 9, Problem 2. Prove that Φ^{\vee} is a root system in E, whose Weyl group is naturally isomorphic to \mathcal{W} ; show also that

$$\frac{2(\beta^{\vee},\alpha^{\vee})}{(\alpha^{\vee},\alpha^{\vee})} = \frac{2(\alpha,\beta)}{(\beta,\beta)}$$

and draw a picture of Φ^{\vee} in the cases A_2 , B_2 , G_2 .

Section 9, Problem 6. Prove that \mathcal{W} is a normal subgroup of $\operatorname{Aut}(\Phi)$, the group of all linear isomorphisms of Φ onto itself.

Section 10, Problem 2. If Δ is a base of Φ , and $\alpha, \beta \in \Delta$ ($\alpha \neq \beta$), prove that the set $(\mathbb{Z}\alpha + \mathbb{Z}\beta) \cap \Phi$ is a root system of rank 2 in the subspace *E* spanned by α, β (see Exercise 9.7).

Section 10, Problem 6. Define a function $\operatorname{sn} : \mathcal{W} \longrightarrow \{\pm 1\}$ by $\operatorname{sn}(\sigma) = (-1)^{\ell(\sigma)}$. Prove that sn is a homomorphism.