
Homework 4 Solutions

Problem 1. Section 7.2 (page 34) #2. M = sl3 contains a copy of L = sl2 in its
upper right-hand corner. Write M as a direct sum of irreducible L-modules (M viewed as
an L-module via the adjoint representation): V (0)⊕ V (1)⊕ V (1)⊕ V (2).

Solution: Recall that V (k) is the k+1 dimensional irreducible representation of sl2(C).
With respect to the subalgebra

sl2 =


 a b 0

c −a 0
0 0 0


of sl3, the space sl2 itself is a submodule equivalent to the adjoint representation of sl2, which
is V (2). There are two two dimensional invariant subspaces:

 0 0 x
0 0 y
0 0 0

 ,


 0 0 0

0 0 0
−y x 0


These are both isomorphic to the standard module V (1). We remark that if we did this
for sln ⊂ sln+1 in general, there would still be two n-dimensional submodules realizing the
standard module and its dual (contragredient) module. For sl2, the standard module and its
dual are isomorphic, but not for sln with n > 2. Finally, there is a one dimensional module

C

 1
1

−2


which gives a V (0). Thus sl3 ∼= V (0)⊕ 2V (1)⊕ V (2) as an sl2-module.

Problem 2. Section 7.2 (page 34) #6. Decompose the tensor product of two L-modules
V (3) and V (7) into the sum of irreducible submodules: V (4) ⊕ V (6) ⊕ V (8) ⊕ V (10). Try
to develop a general formula for the decomposition of V (m)⊗ V (n).

Solution: We could ask for an explicit decomposition of V (3) ⊗ V (7) into irreducible
subspaces, but instead I will just prove that the decomposition is correct, and also generalize
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it. Let q be an indeterminate. Define the character of a representation V to be

χV =
∑
k

dim(Vk)q
k

where we recall the notation used in Theorem 7.2 that Vk is the k-eigenspace of H =(
1

−1

)
(denoted h by Humphreys). So by Theorem 7.2

χV (k) = qk + qk−2 + . . .+ q−k =
qk+1 − q−(k+1)

q − q−1
.

The characters of the irreducibles are linearly independent because the numerators qk+1 −
q−(k+1) (k ∈ Z) are linearly independent. Since we know that every finite dimensional rep-
resentation of sl(2,C) decomposes uniquely into a direct sum of irreducible,s the linearly
independence of the characters of irreducibles clearly implies that the representation is de-
termined by its characters

Now the character of V (3)⊗V (7) is the product of the characters, and it is good to expand
the character of the smaller V (3), and leave the character of the V (7) in the unexpanded
form. Thus

χV (3)⊗V (7) = χV (3) · χV (7) = (q3 + q + q−1 + q−3)(q − q−1)−1(q8 − q−8)

= (q − q−1)−1(q11 − q−11 + q9 − q−9 + q7 − q−7 + q5 − q−5) = χV (10) ⊕ χV (8) ⊕ χV (6) + χV (4).

This prove that V (3) ◦ V (7) ∼= V (10)⊕ V (8)⊕ V (6)⊕ V (4).
We can generalize this as follows. Without loss of generality, assume that m < n. Then

the character of V (m)⊗ V (n) can be written(
m∑
j=0

qm−2j

)
(q − q−1)−1(qn+1 − q−n−1) =

(q − q−1)−1

(
qn+1

m∑
j=0

qm−2j − q−n−1

m∑
j=0

q−m+2j

)
=

m∑
j=0

(q − q−1)−1(qn+m−2j+1 − q−(n+m−2j+1)) =
m∑
j=0

χV (n+m−2j).

This proves that if m < n then

V (m)⊗ V (n) ∼=
m⊕
j=0

V (n+m− 2j) = V (n+m)⊕ V (n+m− 2)⊕ · · · ⊕ V (n−m).
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Problem 3. Section 8.5 (page 40) #2. For each algebra of type Aℓ, Bℓ, Cℓ, Dℓ, determine
the roots and root spaces. How are the various hα expressed in terms of the basis for H
given in (1.2)?

Solution. For Aℓ, we take the maximal toral subalgebra h to be the diagonal subalgebrat =

 t1
. . .

tℓ+1

 |
∑

ti = 0

 .

Then h∗ is generated by the linear functionals ei such that ei(t) = ti. It is isomorphic to the
quotient of Cℓ+1 by the one-dimensional subspace spanned by the vector (1, 1, · · · , 1) since
the vector

∑
ei is zero.

As I have explained, I prefer to use slightly different realizations of the classical Lie
algebras than Humphreys. There is no substantial difference since the following realizations
will be conjugate to those used by Humphreys in GL(N,C) where N = 2ℓ + 1 for Bℓ and
N = 2ℓ for Cℓ and Dℓ. Let JN be the N ×N matrix

JN =

 1
. . .

1

 .

Then we define so(N), which may also be denoted o(N) to be the set of N × N matrices
X ∈ MatN(C) that satisfy XJ = −J · tX with J = JN .

We define sp(2ℓ) (Type Cℓ), For so2ℓ+1 (Type Bℓ) and so2ℓ (Type Dℓ) to be the set of
matrices X that satisfy

XJ + JX t = 0

where J is as in the following table:

Bℓ J2ℓ+1

Cℓ

(
−Jℓ

Jℓ

)
Dℓ J2ℓ

.

Let us define the Cartan subalgebra h to be
t =



t1
. . .

tℓ
−tℓ

. . .

−t1




∼= Cℓ
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in the cases Cℓ and Dℓ, and
t =



t1
. . .

tℓ
0

−tℓ
. . .

−t1




∼= Cℓ

in the case Bℓ. For Humphreys’ realizations we would have the diagonal entries in a different
order, more precisely diag(t1, · · · , tℓ,−t1, · · · ,−tℓ) for types Cℓ andDℓ and diag(t1, · · · , tℓ,−t1, · · · ,−tℓ, 0)
for type Bℓ.

We will denote by ei ∈ h∗ the linear functional that maps t to ti. The root systems are:

Aℓ {ei − ej, 1 ⩽ i, j ⩽ ℓ+ 1, i ̸= j}
Bℓ {±ei ± ej, 1 ⩽ i, j ⩽ ℓ, i ̸= j} ∪ {ei}
Cℓ {±ei ± ej, 1 ⩽ i, j ⩽ ℓ, i ̸= j} ∪ {2ei}
Dℓ {±ei ± ej, 1 ⩽ i, j ⩽ ℓ, i ̸= j}

For the hα here they are for the simple roots in types B3 and C3, and one non-simple root.

Type B3

The simple roots are α1 = e1 − e2, α2 = e2 − e3 and α3 = e3. We list the hα and xα; the
x−α are the transposes of the xα (except for α3, where it is twice the transpose). We also do
one non-simple root e1 + e2 = α1 + 2α2 + 2α3
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α hα xα

α1 = e1 − e2



1
−1

0
0

0
1

−1





0 1
0

0
0

0
0 −1

0



α2 = e2 − e3



0
1

−1
0

1
−1

0





0
0 1

0
0

0 −1
0

0



α3 = e3



0
0

2
0

−2
0

0





0
0

0 1
0 −1

0
0

0



e1 + e2



1 1
1 −1

0
0

0
−1

−1





0 1
0 −1

0
0

0
0

0


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Type C3

The simple roots are α1 = e1 − e2, α2 = e2 − e3 and α3 = 2e3. We list the hα and xα; the
x−α are the transposes of the xα. We also do one non-simple root e1 + e2 = α1 + 2α2 + α3

α hα xα

α1 = e1 − e2


1

−1
0

0
1

−1




0 1

0
0

0
0 −1

0



α2 = e2 − e3


0

1
−1

1
−1

0




0

0 1
0

0 −1
0

0



α3 = e3


0

0
1

−1
0

0




0

0
0 1

0
0

0



e1 + e2


1

1
0

0
−1

−1




0 1

0 1
0

0
0

0



Problem 4. Section 8.5 (page 40) #8. (Do sl3 only.) Calcuate explicitly the root strings
and Cartan integers. In particular prove that all Cartan integers 2(α|β)/(β|β|) with α ̸= β
for sln are 0,±1.

Solution. (Omitted.)

Problem 5. Section 8.5 (page 40) #10. Prove that no four, five or seven dimensional
semisimple Lie algebras exist.
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Solution. Let dim(h) = ℓ. We have dim(g) = dim(h) + |Φ|, where Φ is the root system.
The number of simple roots equals ℓ, and for each simple root, there is also its negative, so
|Φ| ⩾ 2ℓ and thus dim(g) ⩾ 3ℓ. So if dim(g) ⩽ 9, we need only consider the cases ℓ = 1 or 2.

We know the possible root systems when dim(h) = 1 (A1 only, with dim(g) = 3), and
when dim(h) = 2:

Φ |Φ| dim(g)
A1 × A1 2 6
A2 6 8
B2 = C2 8 10
G2 12 14

We see that there are semisimple Lie algebras of dimensions 3, 6, 8 but none of dimensions
4, 5 or 7.

Problem 5′. Section 8.5 (page 40) #11. If (α, β) > 0, prove that α−β ∈ Φ for α, β ∈ Φ.
Is the converse true?

Solution. In Section 8.5, Humphreys defines the inner product (α,β) to equal κ(tα, tβ).
Let us show that the express the Cartan integer β(hα), which appears in Section 8.4 in terms
of the inner product. We will prove

β(hα) =
2(β,α)
(α,α)

.

Indeed

β(hα) = β

(
2tα

κ(tα, tα)

)
= 2

κ(tβ, tα)

κ(tα, tα)
=

2(β, α)

(α, α)
.

Now let q and r be as in Proposition 8.4 (e). Then r − q = β(hα) > 0 and since r, q are
nonnegative integers, r ⩾ 1. Thus −r ⩽ −1 ⩽ q and so by Proposition 8.4 (e), β − α is a
root. Thus its negative α− β is a root.

The converse is not true and we may use the G2 root system to give a counterexample.
Let α1, α2 be the short and long simple root (labeled α and β in Figure 1 on page 44). Now
let α = α1 and β = α1 + α2. Then α− β is a root, but (α, β) < 0.
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