## Homework 3 Solutions

Problem 1: Section 4.3 (page 20) \#7. Prove the converse to Theorem 4.3 (Cartan's Criterion).

Solution: We show that if $L \subseteq \mathfrak{g l l}(V)$ is solvable then $\operatorname{tr}(x y)=0$ for $x \in[L, L], y \in L$. By Lie's theorem, $L$ stabilizes a flag

$$
V=V_{n} \supset V_{n-1} \supset \cdots \supset V_{0}=0, \quad \operatorname{dim}\left(V_{i}\right)=i .
$$

Choose a basis of $V$ so that $V_{k}$ is the span of $v_{1}, \cdots, v_{k}$. With respect to this basis, any element $x$ of $V$ is upper triangular, so

$$
x=\left(\begin{array}{cccc}
\lambda_{1} & * & \cdots & * \\
& \lambda_{2} & & * \\
& & \ddots & \vdots \\
& & & \lambda_{n}
\end{array}\right) .
$$

Moreover an element $y \in[L, L]$ is a commutator of upper triangular matrices, so it is upper triangular and nilpotent:

$$
y=\left(\begin{array}{cccc}
0 & * & \cdots & * \\
& 0 & & * \\
& & \ddots & \vdots \\
& & & 0
\end{array}\right) .
$$

Therefore $x y$ is also upper triangular and nilpotent so $\operatorname{tr}(x y)=0$.
Problem 2: Section 5.4 (page24) \#1. Prove that if $L$ is nilpotent, the Killing form of $L$ is identically zero.

Solution. Let $L=L^{0} \supset L^{1} \supset \cdots \supset L^{n}=0$ be the descending series, so if $x \in L$ then $\operatorname{ad}(x) L^{i} \subseteq L^{i+1}$. Thus $\operatorname{ad}(x) \operatorname{ad}(y) L^{i} \subseteq L^{i+2}$ and so $(\operatorname{ad}(x) \operatorname{ad}(y))^{n-1}=0$. We see that $\operatorname{ad}(x) \operatorname{ad}(y)$ is nilpotent so $\kappa(x, y)=\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y))=0$.

Problem 3: Section 5.4 (page 24) \#5. Let $L=\mathfrak{s l}(2, F)$. Compute the basis of $L$ with respect to the standard basis, relevant to the Killing form.

Solution. We use the basis $\{H, E, F\}$ where

$$
H=\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

With respect to this basis
$\operatorname{ad}(H)=\left(\begin{array}{ccc}0 & & \\ & 2 & \\ & & -2\end{array}\right), \quad \operatorname{ad}(E)=\left(\begin{array}{ccc}0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \quad \operatorname{ad}(F)=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0\end{array}\right)$.
From this, we compute that the Killing form is given by the following table:
Thus the dual basis to $\{H, E, F\}$ is $\left\{\frac{1}{8} H, \frac{1}{4} F, \frac{1}{4} E\right\}$.
Problem 4: Section 6.4 (page 30) \#1. Using the standard basis for $L=\mathfrak{s l}(2, F)$, write down the Casimir element of the adjoint representation of $L$ (cf. Exercise 5.5). Do the same thing for the usual (3-dimensional) representation of $\mathfrak{s l}(3, F)$, first computing dual bases relative to the trace form.

Solution: For $\mathfrak{s l}_{2}$, using the result of the previous problem, the Casimir element of the adjoint representation is

$$
\operatorname{ad}(H) \text { ad }\left(\frac{1}{8} H\right)+\operatorname{ad}(E) \text { ad }\left(\frac{1}{4} F\right)+\operatorname{ad}(F) \operatorname{ad}\left(\frac{1}{4}\right) E .
$$

In terms of the matrices for ad computed in the previous problem, this equals

$$
\frac{1}{8}\left(\begin{array}{lll}
0 & & \\
& 2 & \\
& & -2
\end{array}\right)^{2}+\frac{1}{4}\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

which works out to

$$
\frac{1}{8}\left(\begin{array}{lll}
0 & & \\
& 4 & \\
& & 4
\end{array}\right)+\frac{1}{4}\left(\begin{array}{lll}
2 & & \\
& 2 & \\
& & 0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{lll}
2 & & \\
& 0 & \\
& & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

This is consistent with the computation at the bottom of page 27 that $c_{\phi}=\operatorname{dim}(L) / \operatorname{dim}(V)$ which equals 1 when $V=L$ (for the adjoint representation).

For the standard representation of $\mathfrak{s l}_{3}$, dual bases of $\mathfrak{g}$ for the trace bilinear form in the
standard representation may be taken to be

| $x_{i}$ | $y_{i}$ | $x_{i} y_{i}$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{lll}1 & & \\ & -1 & \\ & & 0\end{array}\right)$ | $\left(\begin{array}{ccc}2 / 3 & & \\ & -1 / 3 & \\ & & -1 / 3\end{array}\right)$ | $\left(\begin{array}{ccc}2 / 3 & & \\ & 1 / 3 & \\ & & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & & \\ & 1 & \\ & & -1\end{array}\right)$ | $\left(\begin{array}{ccc}1 / 3 & & \\ & 1 / 3 & \\ & & -2 / 3\end{array}\right)$ | $\left(\begin{array}{lll}0 & & \\ & 1 / 3 & \\ & & 2 / 3\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & & \\ & 0 & \\ & & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & & \\ & 1 & \\ & & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}1 & & \\ & 0 & \\ & & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & & \\ & 1 & \\ & & 0\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & & \\ & 0 & \\ & & 1\end{array}\right)$ |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & & \\ & 0 & \\ & & 1\end{array}\right)$ |

Thus

$$
\sum x_{i} y_{i}=\left(\begin{array}{ccc}
8 / 3 & & \\
& 8 / 3 & \\
& & 8 / 3
\end{array}\right)
$$

which is again consistent with the formula $c_{\phi}=\operatorname{dim}(L) / \operatorname{dim}(V)$, with $\operatorname{dim}(L)=8$ and $\operatorname{dim}(V)=3$.

Problem 5: Section 6.4 (page 30) \#6. Let $L$ be a simple Lie algebra. Let $\beta(x, y)$ and $\gamma(x, y)$ be two associate bilinear forms on $L$. If $\beta$ and $\gamma$ are nondegenerate, prove that $\beta$ and $\gamma$ are proportional. [Use Schur's Lemma.]

Solution. If $V$ is any $L$-module, we may make the dual space $V^{*}$ into a module (the dual or contragredient module) by

$$
\begin{equation*}
(x \lambda)(v)=-\lambda(x v) \tag{1}
\end{equation*}
$$

for $x \in L, \lambda \in V^{*}, v \in V$. To check that this is a representation, we must show that

$$
\begin{equation*}
[x, y] \lambda=x(y \lambda)-y(x \lambda) . \tag{2}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& ([x, y] \lambda)(v)=-\lambda([x, y] v)=-\lambda(x y(v))+\lambda(y x(v)) \\
& =-(x \lambda)(y v)+(y \lambda)(x v)=-y(x \lambda)(v)+x(y \lambda)(v),
\end{aligned}
$$

proving (2). Now let $\beta$ be an associative form, and define $\phi_{\beta}: L \longrightarrow L^{*}$ by

$$
\phi_{\beta}(x)(y)=\beta(x, y) .
$$

Lemma 1. $\phi_{\beta}$ is a L-module homomorphism.
Proof. Note that if $\lambda \in L^{*}$ then the contragredient action (1) means that

$$
(x \lambda)(z)=-\lambda(\operatorname{ad}(x) z)=-\lambda([x, z]), \quad x, z \in \mathfrak{g}, \lambda \in \mathfrak{g}^{*} .
$$

So to check that $\phi_{\beta}(\operatorname{ad}(x) y)=\left(x \phi_{\beta}\right)(y)$ we need

$$
\phi_{\beta}(\operatorname{ad}(x) y)(z)=-\phi_{\beta}(y)([x, z]),
$$

or

$$
\beta([x, y], z)=-\beta(y,[x, z]) .
$$

This is equivalent to the associativity of the form $\beta$.
Now since $L$ is simple, the adjoint representation is irreducible. It follows easily that the module $L^{*}$ is also irreducible. By Schur's Lemma, the space of $L$-module homomorphisms $L \rightarrow L^{*}$ is at most one-dimensional, so $\phi_{\beta}$ and $\phi_{\gamma}$ are proportional. Therefore $\beta$ and $\gamma$ are also proportional.

Problem 6: Section 6.4 (page 30) \#7. It will be seen later that $\mathfrak{s l}(n, F)$ is actually simple. Assuming this and using Exercise 6, prove that the Killing form $\kappa$ on $\mathfrak{s l}(n, F)$ is related to the ordinary trace form by $\kappa(x, y)=2 n \operatorname{tr}(x y)$.

Solution. Both forms are associative therefore (by the last exercise) proportional, so it is sufficient to prove $\kappa(x, y)=2 n \operatorname{tr}(x y)$ for any $x, y$ such that $\operatorname{tr}(x y) \neq 0$. We choose $x=y=H$ where

$$
H=\left(\begin{array}{ccccc}
1 & & & & \\
& -1 & & & \\
& & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right)
$$

We will show that

$$
\kappa(H, H)=4 n, \quad \operatorname{tr}\left(H^{2}\right)=2 .
$$

The second identity is clear. For the first, we need to compute the eigenvalues of $\operatorname{ad}(H)^{2}$. We will denote by $E_{i j}$ the elementary matrix with 1 in the $i, j$ position, 0 elsewhere. Any element of the diagonal Cartan subalgebra is an eigenvector of $\operatorname{ad}(H)$ with eigenvalues 0 . The remaining eigenvectors are each of the form $E_{i j}$. These also have eigenvalue 0 if $i>2$ and $j>2$. The remaining cases are given by the following table.

| vector | $E_{12}$ | $E_{21}$ | $E_{1 j}$, | $j>2$ | $E_{2 j}$, | $j>2$ | $E_{i 1}$, | $i>2$ | $E_{j 2}$, | $i>2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| eigenvalue | 2 | -2 | 1 |  | -1 |  | -1 |  | 1 |  |

Then $\operatorname{tr}\left(\operatorname{ad}(H)^{2}\right)$ is the sum of the squares of these eigenvalues, that is

$$
1 \cdot 2^{2}+1 \cdot(-2)^{2}+(n-2) \cdot 1^{2}+(n-2) \cdot(-1)^{2}+(n-2) \cdot(-1)^{2}+(n-2) \cdot 1^{2}
$$

which equals $4 n$.

