Math 210C Homework 3

- Section 4 (page 20) #7
- Section 5 (page 24) #1,5
- Section 6 (page 30) #6,7

Section 4 #7 Prove the converse to Theorem 4.3. That is, if $L \subseteq gl(V)$ is solvable prove that tr(xy) = 0 for all $x \in [L, L]$ and $y \in L$.

Section 5 #1 Prove that if L is nilpotent, the Killing form of L is identically zero.

Section 5 #5 Let $L = \mathfrak{sl}(2, F)$. Compute the basis of L dual to the standard basis, relative to the Killing form.

Section 6 #6 Let L be a simple Lie algebra. Let $\beta(x, y)$ and $\gamma(x, y)$ be two symmetric associative bilinear forms on L. If β, γ are nondegenerate, prove that β and γ are proportional. [Hint: Use Schur's Lemma.]

Section 6 #7 It will be seen later that $\mathfrak{sl}(n, F)$ is actually *simple*. Assuming this and using Exercise 6, prove that the Killing form κ on $\mathfrak{sl}(n, F)$ is related to the ordinary trace bilinear form by $\kappa(x, y) = 2n \operatorname{tr}(xy)$.