
Math 210C Homework 2 Solutions

Section 2.3 #1. Prove that the set of all inner derivations ad(x), x ∈ L is an ideal of
Der(L). What is the group analog of this result?

Solution. Suppose that D ∈ gl(L) is a derivation of L, and that ad(x) is an inner
derivation (for some x ∈ L). We show that

[D, ad(x)] = ad(D(x)). (1)

Note that this implies that the subalgebra of Der(L) consisting of inner derivations is an
ideal, as required. Indeed, applying [D, ad(x)] to y ∈ L gives

D([x, y])− [x,Dy] = [Dx, y] + [x,Dy]− [x,Dy] = ad(Dx)y

proving (1) and we are done.
The corresponding result for groups is that the subgroup of the automorphism group

Aut(G) of a group G consisting of inner automorphisms is a normal subgroup.

Section 2.3 #7. Prove that t(n, F ) and d(n, F ) are self-normalizing subalgebras of
gl(n, F ), whereas n(n, F ) has normalizer t(n, F ).

Solution. I will use the notation Eij to represent the matrix with 1 in the i, j position, 0
elsewhere. Suppose that x normalizes t = t(n, F ). This means that [x, y] is upper triangular
whenever y is upper triangular. If x is not in t then xij 6= 0 for some i > j. Let y = Ejj ∈ t.
Then

[x, y]ij = xij 6= 0

so [x, y] /∈ t. This is a contradiction since x ∈ N(t). We have proved that N(t) = t.
Next suppose that x = (xij) normalizes d = d(n, F ). We must show that x ∈ d. If not,

xij 6= 0 for some i 6= j and then [x, y]ij = xij with y = Ejj ∈ d, contradiction since x ∈ N(d).
Finally, we must show that N(n) = t. If x ∈ n and y ∈ t then xy and yx are upper

triangular and nilpotent, hence so is [x, y] = xy − yx. This proves t ⊆ N(n). Conversely
suppose that x /∈ t so xij 6= 0 for some i > j. Now y = Eji ∈ n but [x, y]jj = xij. So [x, y] /∈ n
and thus x /∈ N(n).

Section 3.3 #1. Let I be an ideal of L. Then each member of the derived series or
descending central series of I is also an ideal of L.
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The following basic fact (mentioned in Humphreys, page 6) implies the exercise since the
ideals in the derived series and descending central series are obtained from L by successive
bracketing.

Lemma 1. If I, J are ideals in L, then so is [I, J ].

Proof. If x ∈ I, y ∈ J and z ∈ L we need to show that [z, [x, y]] ∈ [I, J ]. Indeed by the
Jacobi identity,

[z, [x, y]] = [[z, x], y] + [x, [z, y]] ∈ I + J

since I and J are ideals.

Section 3.3 #2. Prove that L is solvable if and only if there exists a chain of subalgebras
L = L0 ⊃ L1 ⊃ L2 ⊃ . . . ⊃ Lk = 0 such that Li+1 is an ideal of Li and such that each
quotient Li/Li+1 is abelian.

Solution. We start with:

Lemma 2. If L is a Lie algebra and I is an ideal then L/I is abelian if and only if I ⊇ [L,L].

Proof. If x ∈ L let x denote the image of x in L/I. Since [x, y] = [x, y] it is clear that
[x, y] = 0 for all x, y ∈ L if and only if I ⊇ [L,L].

By the Lemma, if L is solvable and L(i) is the derived series, we may take Li = L(i) and
obtain a chain of subalgebras L0 ⊃ L1 ⊃ · · · such that Li+1 is an ideal of Li with abelian
quotients. Conversely, suppose we are given such a chain. Since L0/L1 is abelian, by the
Lemma, L1 ⊇ [L,L] = L(1). Then since L1/L2 is abelian, L2 ⊇ [L1/L1] ⊇ [L(1), L(1)] = L(2).
Continuing this way we eventually get Ln ⊇ L(n). But Ln = 0 so L(n) = 0. Therefore L is
solvable.

Section 3.3 # 5. Prove that the nonabelian two dimensional algebra constructed in
(1.4) is solvable but not nilpotent. Do the same for the algebra in Exercise 1.2.

Solution. The first Lie algebra is Fx ⊕ Fy where [x, y] = x. The derived series is
L(1) = Fx and L(2) = [Fx, Fx] = 0, so this Lie algebra is solvable. However the descending
central series has L1 = Fx and L2 = [L, Fx] = Fx so Ln = Fx for all n > 1. Thus the Lie
algebra is not nilpotent.

For the second Lie algebra, L = Fx⊕Fy⊕Fz where [x, y] = z, [x, z] = y and [y, z] = 0.
In this case we find L(1) = Fy ⊕ Fz and L(2) = 0, but Ln = Fy ⊕ Fz for all n > 1. So this
Lie algebra also is solvable but not nilpotent.

Section 3.3 # 6. Prove that the sum of two nilpotent ideals of a Lie algebra L is again
a nilpotent ideal. Therefore L posesses a unique maximal nilpotent ideal. Determine this
ideal for each algebra in Exercise 5.
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Solution. Suppose that I and J are nilpotent ideals, and let K = I + J . Let I i, J i, Kk

be the descending central series. Let K = I + J . We will show that

Kn ⊆ Kn (2)

where we define

Kn = In + Jn +
n−1∑
i=0

I i ∩ Jn−1−i.

The sum is by definition zero if n = 0, so there are no terms, and K0 = I0 +J0 = I+J = K.
Thus (2) is true if n = 0. Arguing by induction, assume (2) and note that

[I,Kn] ⊆ [I, In] + [I, Jn] +
n−1∑
i=0

[I, I i ∩ Jn−1−i] ⊆ In+1 + I ∩ Jn +
n−1∑
i=0

I i+1 ∩ Jn−1−i

whence [I,Kn] ⊆ Kn+1 and similarly [J,Kn] ⊆ Kn+1. Therefore

Kn+1 = [I,Kn] + [J,Kn] ⊆ Kn+1.

This proves (2).
Since I and J are nilpotent, Kn = 0 for n sufficiently large proving that Kn = 0 and

therefore K is nilpotent. We have proved that the sum of two nilpotent ideals is nilpotent.
Thus if K is a maximal nilpotent ideal then K contains every nilpotent ideal I (since other-
wise I +K is a strictly larger nilpotent ideal). Therefore L has a unique maximal nilpotent
ideal.

Remark 1. The next two problems were described as being on page 20 and in Section 5.1.
This was an error on my part. The two problems on page 20 are in Section 4.3. (There are
no problems in Section 5.1.) If you did two different problems because of my mistake, I will
accept those instead.

Remark 2. Problem 4.3 #1 is different in earlier editions of the book. The following version
is in the 1994 edition. In my old 1972 version of the book, the same question is asked for
the classical Lie algebras, not just sl(V ).

Section 4.3 #1. Let L = sl(V ). Use Lie’s Theorem to prove that Rad(L) = Z(L);
conclude that L is semisimple (cf. Exercise 2.3). [Observe that Rad(L) lies in each maximal
subalgebra B of L. Select a basis of V so that B = L∩ t(n, F ), and notice that the transpose
of Bis also a maximal solvable subalgebra of L. Conclude that Rad(L) ⊂ L ∩ d(n, F ), then
that Rad(L) = Z(L).]

Solution. We must prove

Lemma 3. Let L be a finite-dimensional Lie algebra. If B is a maximal solvable subalgebra
then rad(L) ⊆ B.
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Proof. We recall that if M ′ is a solvable ideal in the Lie algebra M and if M/M ′ is also
solvable then M is solvable. To apply this take M = B + rad(L) and M ′ = rad(L). Clearly
M ′ is a solvable ideal in M and M/M ′ ∼= B/(B∩rad(L)) is solvable since it is a homomorphic
image of the solvable Lie algebra B. Therefore B + rad(L) is solvable and by the assumed
maximality of B we have B + rad(L) = B, whence rad(L) ⊆ B.

Now to solve the problem, identify L = sl(V ) = sl(n, F ). By Lie’s theorem, every solvable
Lie subalgebra of sl(V ) stabilizes a flag. Hence the stabilizer of a flag is maximal solvable,
and therefore contains rad(L). Both t and its transpose tt are stabilizers of flags, so rad(V ) ⊆
t ∩ tt = d. Now let x ∈ rad(V ). Since we know x is diagonal, assume x = diag(x1, · · · , xn).
If two of the eigenvalues xi and xj are distinct, then [x,Eij] = (xi − xj)Eij is not diagonal,
so [x,Eij] /∈ d. This is a contradiction since rad(V ) is an ideal. Thus x is a scalar linear
transformation, hence x ∈ Z(L). This proves that rad(V ) ⊆ Z(L). Then remembering that
L = sl(n, F ), Z(L) = 0 so L is semisimple.

Section 4.3 #5. If x, y ∈ End(V ) commute, prove that (x+y)s = xs+ys and (x+y)n =
xn + yn. Show by example that this can fail if x, y fail to commute. [Show first that x, y
semisimple (resp. nilpotent) implies x+ y semisimple (resp. nilpotent).]

Lemma 4. (i) Let x and y be commuting semisimple endomorphisms. Then x+y is semisim-
ple.

(ii) Let x and y be commuting nilpotent endomorphisms. Then x+ y is nilpotent.

Proof. For (i), observe that each x eigenspace is y invariant, since if xv = λv then xyv =
yxv = λyv. Because x and y are both semisimple, V is the direct sum of x-eigenspaces,
each of which is y invariant, and the endomorphisms on these x-eigenspaces induced by y
are semisimple since y is semisimple. Thus x and y can be simultaneously diagonalized. It
follows that x+ y is semisimple.

For (ii), if xn = 0 and ym = 0, and xy = yx, then (x + y)n+m =
∑(

n
k

)
xn+m−kyk = 0, so

x+ y is nilpotent.

Now note that since x and y commute, and since by the Jordan decomposition xs and xn
are polynomials in x and ys and yn are polynomials in y, all elements x, y, xs, xn, ys, yn all
commute. By the Lemma, xs + ys is semisimple and xn + yn is nilpotent. By the uniqueness
assertion of the Jordan decomposition (Proposition 4.2) it follows that (x + y)s = xs + ys
and (x+ y)n = xn + yn.

We are also asked to give counterexamples when x and y do not commute. Here are two
examples. In the first, x, y are semisimple but x+ y is nilpotent (and not semisimple):

x =

(
1 1
−1

)
, y =

(
−1

1

)
, x+ y =

(
0 1
0 0

)
.

In the second example, x, y are nilpotent but x+ y is semisimple (and not nilpotent):

x =

(
0 1
0 0

)
, y =

(
0 0
−1 0

)
, x+ y =

(
0 1
−1 0

)
.
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