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Introduction

In our last lectures we gave Frobenius’ theorem as an example
of how character theory can be used to prove theorems in
group theory that, on the face of it, don’t seem to involve
representations. Yet Frobenius’ theorem has never been proved
without representation theory.

Moreover Frobenius’ theorem (proved last time) is an instructive
one because it is quite instructive on the interaction between
characters, conjugacy classes and how the representation
theory reflects the subgroup structure is related to the
representations of the group.

Today we will take this analysis further and describe all
irreducible representations of a Frobenius group.
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Extending versus inducing

One theme for today’s lecture is that there is a parallel between
representations and conjugacy classes.

Another theme is that if G is a finite group and H a subgroup,
there are two ways that we can go from an irreducible
representation π of H to a representation of G.

We may try to extend π to a representation of G, or
We may induce π to a representation of G.

We are interested in getting an irreducible.
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A test case

If [G : H] = 2, then H is normal in G. There are exactly two
things that can happen.

It is possible that π can be extended to a representation of
G. If this is true, there are two ways to do it.
If π cannot be extended, then its induction is irreducble.

The proof (using Frobenius reciprocity) is not very difficult. But
this result is worth thinking about because it is a very common
situation.

There is a similar dichotomy for conjugacy classes when
[G : H] = 2. Today we will review a similar dichotomy for
representations of Frobenius groups, in which the two methods
(extension or induction) appear as alternatives. And we will see
how information about conjugacy classes gives information
about representations.
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Review: Frobenius groups

Recall that a Frobenius group is a group G that acts transitively
on a set X such that no non-identity element fixes more than
one point. The isotropy group H of a point is called a Frobenius
complement. Frobenius’s group says that G is a semidirect
product, G = HK where K is a normal subgroup. Moreover
K = K∗ ∪ {1} where K∗ is the set of elements that fix no
elements of X.

The proof involved showing that every irreducible
representation of H can be extended to an irreducible
representation of G. Today we will prove the complementary
result that every irreducible character of K (except the trivial
character) can be induced to an irreducible of K. The
combination of the two will give us all characters.
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Dummit and Foote definition

Last week we considered the relationship between the Dummit
and Foote definition of a Frobenius group and the usual one
that we’ve adopted.

Standard definition: A Frobenius group is a permutation
group in which no element but the identity fixes more than
one point;
Dummit and Foote definition: A group with a normal
subgroup K such that if 1 6= k ∈ K then the centralizer
C(k) ⊆ K.

We proved that their definition implies that G is a Frobenius
group.

Today let us check the converse.
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A Frobenius group satisfies the Dummit and Foote definition

Proposition
Let G be a Frobenius group acting on the set X with Frobenius
kernel K. Let 1 6= k ∈ K. Then C(k) ⊆ K.

Suppose that h /∈ K commutes with k. Then h has a fixed point
x ∈ X. Thus h = khk−1 also has the fixed point kx. Because no
nonidentity element of G has two fixed points, x = kx which is a
contradiction since k has no fixed points.
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H acts freely on K∗ so |H| | |K| − 1

In our previous lecture on this, we observed a property of K,
that it is a Normal Hall subgroup. The Hall property means that
(|K|, [G : K]) = 1 or equivalently (|K|, |H|) = 1. We can now
improve this result.

Proposition
Let G be a Frobenius group with Frobenius kernel K and
complement H. Then |H| divides |K| − 1.

Let H act on the set K∗ of nonidentity elements of K. If
1 6= h ∈ H then h cannot have a fixed point in K∗ since if
hkh−1 = k then h ∈ C(k), contradiction since C(k) ⊆ K. Thus
each orbit in this action has cardinality |H| and so |H| divides
|K∗| = |K| − 1.
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A Frobenius group with nonabelian Kernel

So far in all our examples, the Frobenius kernel was abelian.
We give an example (from Passman: Permutation Groups) to
show this is not always necessarily true.

Let p be a prime, and let F be the field Fpn where n > 1. The
Frobenius map φ : F −→ F defined by φ(x) = xp is an
automorphism, an element of Gal(Fpn/Fp). We assume that n is
odd, which implies that gcd

(
p + 1, pn−1

p−1

)
= 1 since

pn − 1
p− 1

= pn−1 + pn−2 + · · ·+ 1 = 1 + (p + 1)(p + p3 + · · ·+ pn−2).
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A nonabelian Frobenius Kernel

Consider the group K, with matrices in F of elements of the
form  1 ap b

1 a
1

 .

We must also describe the Frobenius complement. Let H be
the kernel of the norm map F×pn −→ F×p . Explicitly the norm is

N(h) := h1+p+p2+...+pn−1
= h

pn−1
p−1 .

The kernel of the norm map is the unique subgroup of the
cyclic group F× of index q− 1.
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Example, continued

Embed H into GL(3,F) as follows. Let h ∈ H, so h ∈ F and
N(h) = 1. Identify h with the matrix hp+1

h
1


Then H normalizes K.

Note that since gcd
(

p + 1, pn−1
p−1

)
= 1 if h 6= 1 then hp+1 6= 1 also.

Using this, it is easy to see that h has no fixed points in K if
1 6= h ∈ H. This implies that the semidirect product H n K is a
Frobenius group.
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Thompson’s theorem

Although Frobenius kernels can be nonabelian, they are still
highly constrained. John Thompson in his thesis (1959) proved
that they are nilpotent, a mild generalization of abelian. A group
is nilpotent if it is the direct product of its Sylow subgroups.

The example shows a nonabelian Frobenius kernel.
Zassenhaus (1935) showed that SL(2,F5) can be a Frobenius
complement, but this is essentially the only nonsolvable
Frobenius complement.
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Action of H on conjugacy classes of K

We have considered the action of H on K by conjugation, and
we saw that 1 6= h ∈ H has only one fixed point (the identity).
We may similarly consider the action of H on conjugacy classes
of K, and we will see that again, 1 6= h ∈ H only fixes one
conjugacy class of K, namely the identity class. We will
leverage this information to obtain information about characters.

Lemma
Let G be a Frobenius group with kernel K and complement H.
Let C be a nonidentity conjugacy class of K. If h ∈ H and
hCh−1 = C then h = 1.

Suppose hCh−1 = C. If k ∈ K this means that hkh−1 is conjugate
to k in K, so hkh−1 = κkκ−1 for some κ ∈ K. Then κ−1h
commutes with k. Since C(k) ⊆ K we have κ−1h ∈ K so
h ∈ H ∩ K and h = 1 which contradicts our assumption.
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Our goal today

If τ is a character of K and h ∈ H let hτ be the character
hτ(k) = τ(h−1kh). Our goal today is to prove:

Theorem
Let G be a Frobenius group and let τ be a nontrivial irreducible
character of the Frobenius kernel K. Then τG is an irreducible
representation of G. If τ ′ is another irreducible character of K
then τG = (τ ′)G if and only if τ ′ = hτ . The |H| characters hτ are
all distinct, so induction gives an |H|-to-one map from
irreducible nontrivial characters of K to characters of G.

Thus there are complementary constructions for irreducibles of
the Frobenius group G.

Extend irreducible characters from H to G;
Induce irreducible characters from K to G.
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Richard Brauer

The proof will also illustrate a clever idea of Brauer who, after
Frobenius, Schur and Burnside, is the most important historical
figure in the representation theory of finite groups. While
Frobenius, Schur and Burnside were an earlier generation,
Brauer lived 1901-1977. During his years in Germany, he did
important work on central simple algebras in the 1930’s. In
1933 he was forced to leave Europe by the Nazis and
eventually settled in Toronto. His greatest accomplishment was
the development of modular representation theory into a
powerful tool, and he proved many important theorems even in
his later years.

Richard Brauer (Wikipedia)

https://en.wikipedia.org/wiki/Richard_Brauer
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Brauer’s Lemma on character tables

Lemma (Brauer)
Let G be a group with irreducible characters {χ1, · · · , χh} and
conjugacy classes C1, · · · , Ch. Let A be another group with
actions on both the irreducible characters and the conjugacy
classes. If a ∈ A let aχi denote its effect on χi, and similarly let
Ca

i be its effect on Ci. We assume

aχi(Cj) = χi(Ca
j ),

where χi(Cj) means χi(xj) for some representative xj ∈ Cj. (It is
convenient to use a left action on characters and a right action
on conjugacy classes, hence the notation Ca.) Then the
permutation characters of these two actions (on characters and
on conjugacy classes) are the same.
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Proof

To prove this, let X be the character table interpreted as a
square matrix, that is, X is the matrix (χi(Cj)). Let θchar and θcc
be the permutation characters for the actions on characters and
conjugacy classes.

If a ∈ A then A affects a permutation of the characters, that is,
the rows of X, and so it changes the character table to PaX
where Pa is a permutation matrix. The permutation character is
θchar(a) = tr(Pa). On the other hand

aχi(Cj) = χi(Ca
j ),

where on the right hand side, we’ve permuted the columns of
X, so qe obtain an identity

PaX = XQa

where Qa is also a permutation matrix. Now θcc(a) = tr(Qa). The
matrix X is invertible by Schur orthogonality so Qa = X−1PaX
and so tr(Qa) = tr(Pa) which implies θchar(a) = θcc(a).
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Application of Brauer’s Lemma to Frobenius groups

Proposition
Let G be a Frobenius group with kernel K and complement H.
Let τ be a nontrivial character of K, and 1 6= h ∈ H. Define hτ to
be the character hτ(k) = τ(h−1gh), which is the character of the
representation hπ(k) = π(h−1gh). Then hτ 6= τ .

By our last result, the action of h on the set of conjugacy
classes of K by conjugation has only one fixed point, which is
the identity. We may now apply Brauer’s Lemma. Let θchar and
θcc be the permutation characters for the actions of H on
characters and conjugacy classes. We’ve shown θcc(h) = 1,
since h fixes the identity conjugacy class and no other. So
θchar(h) = 0, which implies that in its action on characters, also
by conjugation, h fixes exactly one character, which must be the
trivial character. In particular, hτ 6= τ .
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Main theorem

Theorem ((Restatement of the main theorem))
Let G be a Frobenius group and let τ be a nontrivial irreducible
character of the Frobenius kernel K. Then τG is an irreducible
representation of G. If τ ′ is another irreducible character of K
then τG = (τ ′)G if and only if τ ′ = hτ . The |H| characters hτ are
all distinct, so induction gives an |H|-to-one map from
irreducible nontrivial characters of K to characters of G.

Recall that we are proving that if τ is a nontrivial irreducible
character of K, then τG is an irreducible character of H. We
need to know the value of τG(k) with k ∈ K. This equals

τG(k) =
∑

Kh∈K\G

τ̇(hkh−1)

where we are summing over the right cosets Kh of K.
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Proof, continued

We may take the coset representatives to be the elements of H.
We may also replace τ̇ by τ since hkh−1 ∈ K. Thus

τG(k) =
∑
h∈H

hτ(k).

The hτ are distinct by our last result.
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Proof

Now let τ ′ be another nontrivial character of K. By Frobenius
reciprocity

〈τG, (τ ′)G〉G = 〈τG, τ ′〉K =
∑
h∈H

〈hτ , τ ′〉H =

{
1 if t′ = hτ for some h ∈ H,
0 otherwise.

Taking τ ′ = τ we see that 〈τG, (τ ′)G〉G = 1, so τ is irreducible.
We’ve also proved that τG = (τ ′)G if and only if τ ′ = hτ for some
h ∈ H.
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We now have all the irreducible characters

We now have two different methods of producing irreducible
characters of G: we may extend any irreducible character of H,
or we may induce any nontrivial irreducible character of K. The
following result completely determines the irreducible
representations of a Frobenius group

Theorem
Every irreducible character of G is either the extension of an
irreducible character of H or the induction of a nontrivial
irreducible character of K.
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Counting the conjugacy classes

Let hH be the number of conjugacy classes of H, and let hK be
the number of conjugacy classes of K. There are two types of
conjugacy classes of G. First, those classes whose elements
have fixed points. Each such class, intersected with H is a
conjugacy class of H, so there are hH of these. Second, there
are the conjugacy classes of elements that have no fixed point.
These are all contained in K, and there are hK − 1 of these
(since we are excluding the identity). However we have shown
that H acts without fixed points on these, so these become
(hK − 1)/|H| conjugacy classes.

We’ve counted hH +
hK − 1
|H|

conjugacy classes for G. But we’ve produced exactly this many
irreducible representations, so we are done.
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The group of order 21, revisited

The group of order 21:

〈a, b|a7 = b3 = 1, bab−1 = a2〉

is a Frobenius group. We worked out its character table in the
in-class notes to Lecture 12.

1 a a2 b b2

χ1 1 1 1 1 1
χ2 1 1 1 ρ ρ2

χ3 1 1 1 ρ2 ρ

χ4 3 γ δ 0 0
χ5 3 δ γ 0 0

We can use this to illustrate the ideas from today’s lecture.
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