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Quick Review

Review: Frobenius Groups

Definition
A Frobenius Group is a group G with a faithful transitive action
on a set X such that no element fixes more than one point.

An action of G on a set X gives a homomorphism from G to the
group of bijections X (the symmetric group S|x). In this
definition faithful means this homomorphism is injective. Let A
be the stabilizer of a point xo € X. The group H is called the
Frobenius complement.

Today we will prove:
Theorem (Frobenius (1901))

A Frobenius group G is a semidirect product. That is, there
exists a normal subgroup K such that G = HK and HN K = {1}.




Quick Review

Review: The mystery of Frobenius’ Theorem

Since Frobenius’ theorem doesn’t require group representation
theory in its formulation, it is remarkable that no proof has ever
been found that doesn’t use representation theory!

Web links:

@ Frobenius groups (Wikipedia)
@ Fourier Analytic Proof of Frobenius’ Theorem (Terence
Tao)

@ Math Overflow page on Frobenius’ theorem


https://en.wikipedia.org/wiki/Frobenius_group
https://terrytao.wordpress.com/tag/frobenius-groups/
https://terrytao.wordpress.com/tag/frobenius-groups/
https://mathoverflow.net/questions/63142/character-free-proof-that-frobenius-kernel-is-a-normal-subgroup

Proof of Frobenius’ Theorem

The precise statement

Last week we introduced the notion of a Frobenius group. This
is a group G that acts transitively on a set X in which no
element except the identity fixes more than one point. Let H be
the isotropy subgroup of an element, and let be K* U {1} where
K* is the set of elements with no fixed points. The group H is
called the Frobenius complement and the set K (which will turn
out to be a group) is called the Frobenius kernel.

Our goal is to prove Frobenius’ theorem.

Theorem (Frobenius)

Let G be a Frobenius group, and let K be the set of elements
that either are the identity, or which have no fixed points. Then
K is a normal subgroup of G.




Proof of Frobenius’ Theorem

The strategy

On Thursday, we discussed a strategy for proving this. We
noted that if the theorem is true, then G is a semidirect product,
G = H x K, and so H = G/K. This implies that any
representation of H can be extended to a representation of G.
So the strategy is to prove this fact directly, without assuming
Frobenius’ theorem. If we know that any representation of H
can be extended to G, we can start with a faithful
representation = : H — GL(V), extend it to G, and show that K
is the kernel. This will prove that K is a normal subgroup.



Proof of Frobenius’ Theorem

Generalized characters

It is convenient to work with generalized characters. Recall that
a generalized character of a group G is a class function that is
the difference between two characters. Since characters are
closed under addition and multiplciation, generalized characters
form aring, X(G). It is the ring of class functions that are linear
combinations with Z coefficients of the irreducible characters.

We have defined induction on characters, but it extends by
linearity to generalized characters. The induction formula:

1 . _
x%(g) = m ZX(ng h
xe€G
and the Frobenius reciprocity law

(x% 0)c=(x.0n  xE€X(H),0cXG)
are true for generalized characters, as is obvious by linearity.



Proof of Frobenius’ Theorem

The Trivial Intersection Property

Let G be a Frobenius group and let H be the stabilizer of some
x € X. Thenifg ¢ H, we have

HngHg ' = {1}.

Indeed, if g ¢ H then gx # x. Let y = gx. Then H and gHg ™' are
the stabilizers of the distinct points x and y, so by definition of a
Frobenius group, the only element of H N gHg™! is the identity.

We will refer to this as the trivial intersection property of H.



Proof of Frobenius’ Theorem

Extending generalized characters from H to G

We will prove:

Proposition

Let G be a Frobenius group acting on the set X. Then there is a
linear map X\ : X(H) — X(G) such that if x € X(H) and

X = A(x) thenx(h) = x(h) forh € H. Ifk € K then x(k) = x(1).
The map X\ is an isometry in the sense that

(A0, AW))e = (X ¥)u-




Proof of Frobenius’ Theorem

Definition of g

Let X°(H) be the ideal of X(H) consisting of generalized
functions that vanish at 1. Then

X(H) =714 ® X°(H),

where 15 denotes the character of the trivial representation,
which is the constant function equal to 1. Note that 14 is the
unit element in the ring X (H).

We will define the map A\ differently for 15 and for X°(H).

@ If x € X°(H) we define \(x) = x°.
@ If x = 1y we define A(1y) = 1¢.



Proof of Frobenius’ Theorem

Induction in X°(H)

We need to check that if X = A(x) then Y agrees with x on H.
This is obvious if x = 15 so we may assume y € X°(H),
meaning x(1) = 0. Then ¥ = x°.

Ifh € H and x € X°(H) then

We have 1
X°(h) = H > X!,
xeG
If h =1, this is 0 since x(1) = 0. Thus assume i # 1.



Proof of Frobenius’ Theorem

Now remember the trivial intersection property of the Frobenius
complement:

H ifxeH,

xHx! “H:{ (1} ifx¢H.

So
x(xhx™1) ifx € H,

Ch { 0 it x & H.

In the first case, since y is a class function on H,
x(xhx~1) = x(h). Therefore we get

X (h) = ,;,‘ S x(h) = x(h)

xeH

when x € X°(G). This proves the Lemma.



Proof of Frobenius’ Theorem

X extends y

The Lemma shows that of XY = A\(x) then x(h) = x(h) forh € H
provided x € X°(H). We must also check this if x = 15 and
A(x) = lg, but in that case it is clearly true.

We see that if x is a generalized character of H then \(x) =X
extends y, that is, agrees with x on H.



Proof of Frobenius’ Theorem

If k € K then X (k) = x(1)

We also need to know that if k € K then X(k) = x(1). We handle
the cases x = 1y and x € X°(H) separately. If y = 1 then
X(k) = 1 = x(1). If on the other hand x € X°(H), then

This is zero, since K has no fixed points, and so there is no way
of conjugating it into the isotropy subgroup H. Thus

X(k) =0 = x(1) for x € X°(H). We have proved that

X (k) = x(1) for all x.



Proof of Frobenius’ Theorem

The map y — X is an isometry

To finish the proof of the Proposition, we must show that X is an
isometry. Thus, let x, 1) be generalized characters of H and

= Ax), ¥ = A(v) their extensions to G. We may assume that
either x € XO(H) or y = ly. In the first case, we have ¥ = ¢
and by Frobenius reciprocity

<Y’ a>G = <XG7$>G = <X’$>H'

For the last inner product, we are restricting + to H, and we
have proved that restriction is just ¢, so in this case, we've

proved
X 0)e = (X ¥



Proof of Frobenius’ Theorem

Proof of the isometry, continued

Next we consider the case x = 1y, S0 X = 1¢ by definition.

We can again handle the cases v € X°(H) and ¢ = 1y
separately. The case v € X°(H) is similar to the case y € X°(H)
and can be handled the same way, using Frobenius reciprocity.

We are left with the case where both y = 15 and ¢ = 1. Then
X = lg and ¢ = 1. But then

X0)g = (e 1) = 1= (lu, lu)u = (X, )n-



Proof of Frobenius’ Theorem

The lift takes characters to characters

We have proved the Proposition. Let us repeat it:

Proposition

Let G be a Frobenius group acting on the set X. Then there is a
linear map X\ : X(H) — X(G) such that if x € X(H) and

X = A(x) thenx(h) = x(h) forh € H. Ifk € K then x(k) = x(1).
The map X\ is an isometry in the sense that

A0 AW))6 = (X )

We can extract more information.

Proposition

If x Is a character of H, thenx is a character of G. If x is an
irreducible character of H, then is an irreducible character of
G.




Proof of Frobenius’ Theorem

The first statement follows from the second, so we may assume
that x is irreducible. Indeed, we have (x,X)s; = (X, x)u = 1.
Now X is a generalized character, so we may write Y = > n;x;
where n; are integers. By Schur orthogonality,

1=(%.X)=> n.

The only way 1 can be written as a sum of squares is if only
one of the n; is nonzero, and that n; = +1. Thus x is £x;. We
can rule out the possibility that ¥ = —x; because

X(1) = x(1) > 0 and the degree x;(1) is also > 0.



Proof of Frobenius’ Theorem

The character characterizes the kernel

We have almost everything we need to prove Frobenius’
theorem.

Proposition

Letm: G — GL(V) be a representation, not necessarily
irreducible. Then

ker(m) = {g € G|x(g) = x(1)}.

It is obvious that if g € ker(n), then 7w(g) = Iy = 7(1) so

x(g) = dim(V) = x(1). Conversely, suppose that x(g) = dim(V).
Let d = dim(V) and let ¢y, - - - , ¢4 be the eigenvalues of 7 (g).
Then |g;)| = 1 bute; + ...+ ¢, = d, and by the “converse to the
triangle identity” this implies that ¢; = 1. Thus 7 (g) is the
identity matrix, so g € ker(mw).



Proof of Frobenius’ Theorem

Proof of Frobenius’ theorem

To prove Frobenius’ theorem, let x be the character of any
faithful representation = of H, for example the regular
representation. Then Y is the character of a representation
whose kernel contains K, since we proved X (k) = x(1) = x(1)
for k € K. The kernel cannot contain any other non-identity
element g, since g would be in an isotropy subgroup, hence
conjugate to non-identity element of H; but the kernel does not
contain any non-identity element of H since = is faithful.

Since the set K has been identified as the kernel of a
representation, it is a normal subgroup!



Proof of Frobenius’ Theorem

A look ahead

We have more to say about Frobenius groups, and will resume
this topic on Thursday. For the time being let us make an
observation, which we will illustrate with the Frobenius group

G = (hklh* = k> = 1,hkh™" = k?)

of degree 20 that we computed last week. Recall that this is the
group of affine transformations of Fs.

We have employed two methods of using a subgroup to
construct characters of a larger group G.

@ Extend a representation from the subgroup to G;
@ Induce a representation from the subgroup to G.

We’ve used both these methods in our Frobenius group.
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Extending versus inducing

114 |5 |5 |5

Lk |n [W W
i |L]1T |1 |1 |1
x2 | 1]1 i —1 | —i
3|11 [=1]1 [-1
xa | L|1T [ =i|=11]i
xs|4|—-1]/0 |0 |O

@ The characters x1,--- , x4 are extended from irreducible

characters of the group H.

@ The character xs is induced from an irreducible character
of K.
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The case of a Frobenius group

Let G be a Frobenius group with kernel K and complement H.

@ Today we proved that every irreducible character of H may
be extended to an irreducible character of G.

@ On Thursday we will prove that if 7 is an irreducible
character of K, and 7 # 1, then the induced character 7¢ is
irreducible.

Every irreducible of G comes from either a representation of H
or a representation of K. The playoff between extending and
inducing characters of subgroups is a common feature.

What is remarkable about Frobenius groups is that every
irreducible of G is either extended from a character of G or
induced from an irreducible of H.



Heisenberg groups

Heisenberg groups of order 4

A group G in which the derived group G’ is contained in the
center Z(G) is called a 2-step nilpotent group or Heisenberg
group. The term Heisenberg group comes from an analogy with
the Heisenberg commutation relations in quantum mechanics.

For example, let F = IF, be a finite field, and consider the group

of order ¢*:

1 x z
1 vy | x,y,z€F

1

The center equals the derived group:

G =

1 z
Z(G) =G = 1 | x,y,2€F
1



Heisenberg groups

Central characters

If G is any group and 7 : G — GL(V) an irreducible
representation, and if z € Z(G), then 7 (z)w(g) = w(g)m(z) for all
g € G. In other words, 7(z) is a Z|G]-module homomorphism
V — V. By Schur's Lemma, this implies that 7 (z) acts by a
scalar.

Thus there is a function ¢ : Z(G) — C* such that
m(z) = €&(2) Iy, z € Z(G).
Since 7(z1)7(z2) = 7(z122) we have

£(z122) = &(21)€(22),

so ¢ is a linear character of Z(G). This is the central character
of the irreducible representation .



Heisenberg groups

Irreducibles of the Heisenberg group

We will now quickly explain how to construct the irreducible
characters of the Heisenberg group. We won'’t give proofs. The
center is the commutator subgroup. [G : Z(G)] = ¢* so there are
¢* irreducible linear characters.

The remaining irreducible characters have nontrivial central
character. Given a nontrivial linear character ¢ of Z(G) there is
a unique irreducible character x, with central character £. To
obtain it, we start with the linear character &.

@ We cannot extend ¢ to a character of G.

@ We could induce £ to G but the result would not be
irreducible.



Heisenberg groups

Extend, then induce

Here what works is to first extend then induce. We have

|G| = ¢* and Z(G) = q. So we look for a subgroup A of order ¢>

such that Z(G) € A C G. There are many such subgroups (g + 1
to be precise) but we pick one. We could use the abelian group:

1 Z
A= 1 vy ‘x,y,zEF .
1

@ We extend ¢ to A. There are ¢ different such extensions.
@ Then we induce the extended character from A to G.
The result is irreducible. More remarkably, it doesn’t depend on

any choices we made, namely the group A or the extension of ¢
to a character of A.
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