

# Frobenius Groups (I)

Daniel Bump

February 24, 2022

## Frobenius Groups

The definition of a Frobenius Group in Dummit and Foote (page 896) is a nonstandard one. It can be shown that it is equivalent to the definition we will use. However to prove this equivalence is not easy.

Dummit and Foote define a Frobenius group to be a group  $G$  having a normal subgroup  $N$  such that for every  $x \in N$  the centralizer  $C(x) \subseteq N$ .

Most references define a Frobenius group to be a group with a transitive group action on a set  $X$  such that no element of  $G$  except the identity fixes two elements. Proving that these definitions are the same is nontrivial.

## Frobenius Groups

### Definition

A **Frobenius Group** is a group  $G$  with a faithful transitive action on a set  $X$  such that no element fixes more than one point.

An action of  $G$  on a set  $X$  gives a homomorphism from  $G$  to the group of bijections  $X$  (the symmetric group  $S_{|X|}$ ). In this definition **faithful** means this homomorphism is injective. Let  $H$  be the stabilizer of a point  $x_0 \in X$ . The group  $H$  is called the **Frobenius complement**.

Next week we will prove:

### Theorem (Frobenius (1901))

*A Frobenius group  $G$  is a semidirect product. That is, there exists a normal subgroup  $K$  such that  $G = HK$  and  $H \cap K = \{1\}$ .*

## The mystery of Frobenius' Theorem

Since Frobenius' theorem doesn't require group representation theory in its formulation, it is remarkable that **no proof has ever been found that doesn't use representation theory!**

Web links:

- [Frobenius groups \(Wikipedia\)](#)
- [Fourier Analytic Proof of Frobenius' Theorem \(Terence Tao\)](#)
- [Math Overflow page on Frobenius' theorem](#)

There are many results in group theory that don't involve representations in their statements but whose proofs do involve representation theory. Frobenius' theorem is a very striking example.

## Examples of Frobenius groups

Let  $G$  be a Frobenius group. Let  $H$  be the isotropy subgroup of a point in  $X$ . Then  $H$  is called a **Frobenius complement**. The normal subgroup  $K$  that is predicted by the theorem is called the **Frobenius kernel**

- Let  $F$  be a finite field. The group of affine transformations  $x \rightarrow ax + b$  of  $F$  is a Frobenius group. The Frobenius kernel is the group of translations, isomorphic to the additive group of  $F$ .
- $A_4$  is a Frobenius group.
- Any dihedral group  $D_{2n}$  with  $n$  odd is a Frobenius group.

## The Frobenius Kernel

Let  $G$  be a Frobenius group acting on a set  $X$ . Let  $H$  be the isotropy subgroup of a fixed point  $x_0 \in X$ .

Let  $K^*$  be the set of elements of  $G$  that do not fix any element of  $X$ . Furthermore, let  $K = K^* \cup \{1\}$ . The set  $K$  is called the **Frobenius kernel**.

A more precise statement of Frobenius' theorem is:

### Theorem

*The Frobenius Kernel  $K$  is a subgroup of  $G$ .*

For example, if  $G = A_4$ , then  $K = V$  is the four-group.

## The cardinality of the Frobenius Kernel

Let us compute the cardinality of  $K$ .

If  $x \in X$  let  $G_x$  be the isotropy subgroup, so  $G_{x_0} = H$ . Then

$$K = G - \bigcup_{x \in X} (G_x - \{1\}).$$

The sets  $(G_x - \{1\})$  are disjoint, since by definition of a Frobenius group, only the identity element fixes more than one point. Each such set has cardinality  $|H| - 1$ . So

$$|K| = |G| - |X| \cdot (|H| - 1) = |G| - |X| \cdot |H| + |X|.$$

Now (by the orbit stabilizer theorem)  $|X| \cdot |H| = |G|$ , so  $|K| = |X|$ .

## The Frobenius group is a semidirect product

Suppose we know Frobenius's theorem, that  $K$  is a subgroup of  $G$ . It is obviously normal, and  $K \cap H = \{1\}$ . Since  $|K| = |X| = [G : H]$ , it follows that  $G$  is a semidirect product.

The mystery of Frobenius' theorem is that there is no obvious reason for  $K$  to be a subgroup of  $G$ !

The only known proofs of this fact use character theory.

## The Frobenius group of order 20

Let us compute the character table of a Frobenius group. We will consider the Frobenius group of order 20, which is isomorphic to the normalizer of a 5-Sylow subgroup in  $S_5$ . We can realize it as the group of matrices

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{F}_5, a \neq 0 \right\}.$$

It has generators

$$h = \begin{pmatrix} 2 & \\ & 1 \end{pmatrix}, \quad k = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$$

that satisfy  $h^4 = 1$ ,  $k^5 = 1$ ,  $hkh^{-1} = k^2$ . Let  $H = \langle h \rangle$ ,  $K = \langle k \rangle$ . This group is a Frobenius group with Frobenius complement  $H$  and Frobenius kernel  $K$ .

## Conjugacy classes, derived group

Thus

$$G = \langle h, k \mid h^4 = k^5 = 1, hkh^{-1} = k^2 \rangle.$$

We find the following conjugacy classes

|                |   |     |     |       |       |
|----------------|---|-----|-----|-------|-------|
| size           | 1 | 4   | 5   | 5     | 5     |
| representative | 1 | $k$ | $h$ | $h^2$ | $h^3$ |

Since  $G/K$  is abelian, the commutator subgroup  $G'$  is contained in  $K$ . It cannot be any smaller than  $K$  since this would make it trivial and  $G$  would be abelian. Therefore  $G' = K$ . The quotient  $G/K$  is cyclic of order 4, generated by the coset  $hK$ , and we obtain four linear characters by pulling back the characters of  $G/K \cong \mathbb{Z}_4$ .

## Linear characters

There are 5 conjugacy classes and hence 5 irreducible representations. Since  $\sum d_i^2 = 20$  the remaining irreducible  $\chi_5$  has degree 4. Therefore we have this much of the character table:

|          | 1 | 4   | 5    | 5     | 5     |
|----------|---|-----|------|-------|-------|
|          | 1 | $k$ | $h$  | $h^2$ | $h^3$ |
| $\chi_1$ | 1 | 1   | 1    | 1     | 1     |
| $\chi_2$ | 1 | 1   | $i$  | -1    | $-i$  |
| $\chi_3$ | 1 | 1   | -1   | 1     | -1    |
| $\chi_4$ | 1 | 1   | $-i$ | -1    | $i$   |
| $\chi_5$ | 4 |     |      |       |       |

We could get the last character by decomposing the regular representation of  $G$ .

## The nonlinear character

The last remaining character  $\chi_5$  has degree 4. We could obtain its value by decomposing the regular representation, or from the following considerations.

Since  $\chi_2$  is linear,  $\chi_2\chi_5$  is another irreducible representation of degree 4, and since there is only one,  $\chi_2\chi_5 = \chi_5$ . This tells us that  $\chi_5$  vanishes wherever  $\chi_2$  is nonzero, so the only nonzero values of  $\chi_5$  are at 1 and  $k$ . We know  $\chi_5(1) = 4$  and since  $k$  has 4 conjugates, the orthogonality relation  $\langle \chi_5, \chi_1 \rangle = 0$  implies that  $\chi_5(k) = -1$ .

## The complete character table

|          | 1 | 4   | 5    | 5     | 5     |
|----------|---|-----|------|-------|-------|
|          | 1 | $k$ | $h$  | $h^2$ | $h^3$ |
| $\chi_1$ | 1 | 1   | 1    | 1     | 1     |
| $\chi_2$ | 1 | 1   | $i$  | -1    | $-i$  |
| $\chi_3$ | 1 | 1   | -1   | 1     | -1    |
| $\chi_4$ | 1 | 1   | $-i$ | -1    | $i$   |
| $\chi_5$ | 4 | -1  | 0    | 0     | 0     |

## The nonlinear character is induced from $K$

Let us show that  $\chi_5$  is an induced character. Because its degree is 4, it might be induced from a linear representation of the unique subgroup  $K$  of index 4. We could take any nontrivial linear character of  $K$ , so let us take the character  $\psi(k^m) = \zeta^m$  where  $\zeta = e^{2\pi i/5}$ . To calculate  $\psi^G$ , we need coset representatives for  $N \backslash G$ . We may take these to be the elements of  $H$ , and

$$\psi^G(g) = \dot{\psi}(g) + \dot{\psi}(hgh^{-1}) + \dot{\psi}(h^2gh^{-2}) + \dot{\psi}(h^3gh^{-3}).$$

If  $g \notin K$  then since  $K$  is normal, no conjugate of  $g$  can be in  $K$  and  $\psi^G(g) = 0$ . On the other hand, if  $g = 1$  this formula gives the right value 4, and if  $g = k$  it gives

$$\zeta + \zeta^2 + \zeta^4 + \zeta^3 = -1.$$

We see that  $\chi_5 = \psi^G$ .

## An observation

Here is the character table for the group  $H \cong \mathbb{Z}_4$ .

|          | 1 | $h$  | $h^2$ | $h^3$ |
|----------|---|------|-------|-------|
| $\chi_1$ | 1 | 1    | 1     | 1     |
| $\chi_2$ | 1 | $i$  | -1    | $-i$  |
| $\chi_3$ | 1 | -1   | 1     | -1    |
| $\chi_4$ | 1 | $-i$ | -1    | $i$   |

Comparing this with the character table for  $G$  we see that **every irreducible character of  $H$  (and hence, indeed, any character)** can be extended to a character of  $G$ .

Of course there is a simple reason for this since  $G = H \ltimes K$  we have an isomorphism  $G/K \cong H$ , hence the character can be pulled back under the projection map

$$G \longrightarrow G/K \cong H.$$

## Arguing backwards

This argument requires knowledge that  $K$  is a normal subgroup. Suppose that we are attempting to prove Frobenius's theorem. We have a group action on a set  $X$  and an isotropy subgroup  $H$ . **Although we have a definition of  $K$  as a set, we do not know that it is a group.** So we cannot argue as above.

But using character theory, we will prove (next week) that every representation of  $H$  can be extended to a representation of  $G$ .

Then we may start with any faithful representation  $\pi$  of  $H$ , extend it to  $G$ , and check that the kernel of  $\pi$  is

$$K = \{1\} \cup \{k \in G \mid k \text{ has no fixed points}\}.$$

It will follow that  $K = \ker(\pi)$  is a normal subgroup. **This is the strategy to prove Frobenius' theorem.**

## The Dummit and Foote definition of a Frobenius group

Dummit and Foote give the following definition of a Frobenius group. They define a Frobenius group  $G$  to be a group with a proper, nontrivial normal subgroup  $K$  such that if  $x \in K$  and  $x \neq 1$  then the centralizer  $C(x) \subseteq K$ .

### Theorem

*Let  $G$  be a group with a proper, nontrivial normal subgroup  $K$  such that if  $x \in K$  and  $x \neq 1$  then the centralizer  $C(x) \subseteq K$ . Then there exists a set  $X$  with cardinality  $|K|$  and an action of  $G$  on  $X$  such that  $G$  is a Frobenius group with Frobenius kernel  $K$ .*

We must produce the Frobenius complement  $H$  or equivalently, the set  $X$  with its group action.

## $K$ is a normal Hall subgroup

### Proposition

*Let  $G$  be a group with a proper, nontrivial normal subgroup  $K$  such that if  $x \in K$  and  $x \neq 1$  then the centralizer  $C(x) \subseteq K$ . Then  $|K|$  and  $[G : K]$  are coprime.*

If not, there is a prime  $p$  that divides both  $|K|$  and  $[G : K]$ . Let  $P_K$  be a  $p$ -Sylow subgroup of  $K$ . Find a Sylow subgroup  $P$  of  $G$  containing  $P_K$ . Thus  $P$  contains non-identity elements in  $K$  and others not in  $K$ . As a  $p$ -group it has a nontrivial center (Theorem 1 in Dummit and Foote, page 188). Let  $x \neq 1$  be a central element. There are two cases. If  $x \in K$ , then since  $P \subset C(x)$  contains elements that are not in  $K$ , the assumptions about  $K$  are violated. On the other hand, if  $x \notin K$ , let  $y$  be a nontrivial element of  $P$  that is in  $K$ . Then  $x \in C(y)$  but  $x \notin K$ , so again, the assumptions are violated.

## The Schur-Zassenhaus theorem

Now we need to make use of a well-known theorem that we will not prove.

### Theorem (Schur-Zassenhaus)

*Let  $G$  be a group and  $K$  a normal subgroup such that  $|K|$  and  $[G : K]$  are coprime. Then  $G$  contains a complementary subgroup  $H$  such that  $H \cap K = 1$  and  $HK = G$ . Thus  $G = H \ltimes K$ .*

This famous result is Theorem 39 in Chapter 17 of Dummit and Foote, page 829. The proof uses some basic group cohomology. This theorem appeared in a book by Hans Zassenhaus, who attributed it to Schur. It is usually called the Schur-Zassenhaus theorem.

## Returning to the proof of the theorem

Returning to the group such that  $1 \neq x \in K$  implies  $C(x) \subseteq K$ , the Schur-Zassenhaus theorem implies that there is a subgroup  $H$  such that  $G = HK$  and  $H \cap K = 1$ . Now let  $X$  be the space  $G/H$  of left cosets  $xH$ .

To show that  $G$  is a Frobenius group we must show that if  $g \in G$  has two fixed points in  $X$  then  $g = 1$ .

## $G$ is a Frobenius group

We note that every coset  $gH$  has a representative in  $K$  since  $KH = G$ . Thus there are two distinct elements  $k_1$  and  $k_2$  of  $K$  such that

$$gk_1H = k_1H, \quad gk_2H = k_2H.$$

Let  $h = k_1^{-1}gk_1$ . Then  $hH = H$  so  $h \in H$ . Let  $k = k_1^{-1}k_2$ . Thus  $1 \neq k \in K$  and

$$k_1hk_1^{-1}k_2H = gk_2H = k_2H, \quad k^{-1}hkH = H$$

so  $k^{-1}hk \in H$ .

## The end of the proof

Now consider the commutator

$$h^{-1}k^{-1}hk.$$

Since we've proved that  $k^{-1}hk \in H$  we have

$h^{-1}k^{-1}hk = h^{-1}(k^{-1}hk) \in H$ . On the other hand since  $K$  is normal

$$h^{-1}k^{-1}hk = (h^{-1}kh)^{-1}k \in K.$$

The commutator is therefore in  $H \cap K$  and so  $h^{-1}k^{-1}hk = 1$ . This shows that  $h$  and  $k$  commute. Since  $C(k) \subseteq K$  by hypothesis we have  $h \in H \cap K$  and thus  $h = 1$ . Thus  $g = k_1hk_1^{-1} = 1$ . We have proved that  $G$  is a Frobenius group.