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Frobenius Groups

The definition of a Frobenius Group in Dummit and Foote (page
896) is a nonstandard one. It can be shown that it is equivalent

to the definition we will use. However to prove this equivalence

is not easy.

Dummit and Foote define a Frobenius group to be a group G
having a normal subgroup N such that for every x € N the
centralizer C(x) C N.

Most references define a Frobenius group to be a group with a
transitive group action on a set X such that no element of G
except the identity fixes two elements. Proving that these
definitions are the same is nontrivial.
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Frobenius Groups

Definition
A Frobenius Group is a group G with a faithful transitive action
on a set X such that no element fixes more than one point.

An action of G on a set X gives a homomorphism from G to the
group of bijections X (the symmetric group S|x). In this
definition faithful means this homomorphism is injective. Let A
be the stabilizer of a point xo € X. The group H is called the
Frobenius complement.

Next week we will prove:
Theorem (Frobenius (1901))

A Frobenius group G is a semidirect product. That is, there
exists a normal subgroup K such that G = HK and HN K = {1}.
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The mystery of Frobenius’ Theorem

Since Frobenius’ theorem doesn’t require group representation
theory in its formulation, it is remarkable that no proof has ever
been found that doesn’t use representation theory!

Web links:
@ Frobenius groups (Wikipedia)

@ Fourier Analytic Proof of Frobenius’ Theorem (Terence
Tao)

@ Math Overflow page on Frobenius’ theorem

There are many results in group theory that don’t involve
representations in their statements but whose proofs do involve
representation theory. Frobenius’ theorem is a very striking
example.


https://en.wikipedia.org/wiki/Frobenius_group
https://terrytao.wordpress.com/tag/frobenius-groups/
https://terrytao.wordpress.com/tag/frobenius-groups/
https://mathoverflow.net/questions/63142/character-free-proof-that-frobenius-kernel-is-a-normal-subgroup
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Examples of Frobenius groups

Let G be a Frobenius group. Let H be the isotropy subgroup of
a pointin X. Then H is called a Frobenius complement. The
normal subgroup K that is predicted by the theorem is called
the Frobenius kernel
@ Let F be afinite field. The group of affine transformations
x — ax + b of F is a Frobenius group. The Frobenius kernel
is the group of translations, isomorphic to the additive
group of F.
@ A4 is a Frobenius group.
@ Any dihedral group D,, with n odd is a Frobenius group.
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The Frobenius Kernel

Let G be a Frobenius group acting on a set X. Let H be the
isotropy subgroup of a fixed point xp € X.

Let K* be the set of elements of G that do not fix any element of
X. Furthermore, let K = K* U {1}. The set K is called the
Frobenius kernel.

A more precise statement of Frobenius’ theorem is:

The Frobenius Kernel K is a subgroup of G.

For example, if G = A4, then K = V is the four-group.
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The cardinality of the Frobenius Kernel

Let us compute the cardinality of K.

If x € X let G, be the isotropy subgroup, so G,, = H. Then

K=G-|]J(G:—{1}).

xeX

The sets (G, — {1}) are disjoint, since by definition of a
Frobenius group, only the identity element fixes more than one
point. Each such set has cardinality |H| — 1. So

K| = |G| = |X] - (|H] = 1) = |G| — [X] - |H| + |X].

Now (by the orbit stabilizer theorem) |X| - |H| = |G|, so |K| = |X].
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The Frobenius group is a semidirect product

Suppose we know Frobenius’s theorem, that K is a subgroup of
G. ltis obviously normal, and K N H = {1}. Since
|K| = |X| =[G : H], it follows that G is a semidirect product.

The mystery of Frobenius’ theorem is that there is no obvious
reason for K to be a subgroup of G!

The only known proofs of this fact use character theory.
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The Frobenius group of order 20

Let us compute the character table of a Frobenius group. We
will consider the Frobenius group of order 20, which is
isomorphic to the normalizer of a 5-Sylow subgroup in Ss. We
can realize it as the group of matrices

{(g ll)>|a,bEIE‘5,a7éO}.

It has generators

2 11
() =)
that satisfy n* = 1, & = 1, hkh ™' = k*. Let H = (h), K = (k).

This group is a Frobenius group with Frobenius complement H
and Frobenius kernel K.
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Conjugacy classes, derived group

Thus
G = (hk|h* = k> = 1,hkh™ "' = k).

We find the following conjugacy classes

size 1(4]5|5]5
representative | 1 | k | h | h?> | W

Since G/K is abelian, the commutator subgroup G’ is contained
in K. It cannot be any smaller than K since this would make it
trivial and G would be abelian. Therefore G’ = K. The quotient
G/K is cyclic of order 4, generated by the coset 4K, and we
obtain four linear characters by pulling back the characters of
G/K = Z4.
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Linear characters

There are 5 conjugacy classes and hence 5 irreducible
representations. Since >_ d? = 20 the remaining irreducible s
has degree 4. Therefore we have this much of the character

table:
145 |5 |5
L k|ln [ W
x1|1]1]1 1 1
x2 | 1] 1/ —1| =i
xa|1]1|—-1]1 —1
x4 | 1|1 —i|—1]i
X5 |4

We could get the last character by decomposing the regular
representation of G.
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The nonlinear character

The last remaining character xs has degree 4. We could obtain
its value by decomposing the regular representation, or from
the following considerations.

Since x> is linear, x»xs is another irreducible representation of
degree 4, and since there is only one, x2xs = xs. This tells us
that xs vanishes where ever y;, is nonzero, so the only nonzero
values of xs are at 1 and k. We know ys(1) = 4 and since k has
4 conjugates, the orthogonality relation (xs, x1) = 0 implies that
xs(k) = —1.
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The complete character table

14 |5 |5 |5

L[k [n |[W |
x1|1]1 1 1 1
x2 | 1]1 i —1 | —i
x3|1]1 1|1 -1
xa|1]1 —i | =111
xs|4(-1/0 |0 |O
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The nonlinear character is induced from K

Let us show that x5 is an induced character. Because its
degree is 4, it might be induced from a linear representation of
the unique subgroup K of index 4. We could take any nontrivial
linear character of K, so let us take the character ¢ (k™) = ("
where ¢ = ¢2™/5. To calculate ¢°, we need coset
representatives for N\G. We may take these to be the elements
of H, and

¥O(g) = U(g) + h(hgh™") + Y (h*gh™) + (W gh™?).

If ¢ ¢ K then since K is normal, no conjugate of g can be in K
and ¢°(g) = 0. On the other hand, if g = 1 this formula gives
the right value 4, and if g = k it gives

C+P+¢+ =1
We see that x5 = °.
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An observation

Here is the character table for the group H = Z,.

L n |[W K
x1|1]1 1 1
X2 | -1 | —i
x3|1|—-1]1 —1
X4 1| —i|—1]i

Comparing this with the character table for G we see that every
irreducible character of H (and hence, indeed, any character)
can be extended to a character of G.

Of course there is a simple reason for this since G = H x K we
have an isomorphism G/K = H, hence the character can be
pulled back under the projection map

G— G/K=H.
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Arguing backwards

This argument requires knowledge that K is a normal subgroup.
Suppose that we are attempting to prove Frobenius’s theorem.
We have a group action on a set X and an isotropy subgroup H.
Although we have a definition of K as a set, we do not know
that it is a group. So we cannot argue as above.

But using character theory, we will prove (next week) that every
representation of H can be extended to a representation of G.

Then we may start with any faithful representation = of H,
extend it to G, and check that the kernel of 7 is

K = {1} U {k € GJk has no fixed points} .

It will follow that K = ker(7) is @ normal subgroup. This is the
strategy to prove Frobenius’ theorem.
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The Dummit and Foote definition of a Frobenius group

Dummit and Foote give the following definition of a Frobenius
group. They define a Frobenius group G to be a group with a
proper, nontrivial normal subgroup K such that if x € K and

x # 1 then the centralizer C(x) C K.

Let G be a group with a proper, nontrivial normal subgroup K
such that ifx € K and x # 1 then the centralizer C(x) C K. Then
there exists a set X with cardinality |K| and an action of G on X
such that G is a Frobenius group with Frobenius kernel K.

We must produce the Frobenius complement H or equivalently,
the set X with its group action.
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K is a normal Hall subgroup

Proposition

Let G be a group with a proper, nontrivial normal subgroup K
such that ifx € K and x # 1 then the centralizer C(x) C K. Then
|K| and |G : K] are coprime.

If not, there is a prime p that divides both |K| and [G : K]. Let Pk
be a p-Sylow subgroup of K. Find a Sylow subgroup P of G
containing Pg. Thus P contains non-identity elements in K and
others not in K. As a p-group it has a nontrivial center
(Theorem 1 in Dummit and Foote, page 188). Letx # 1 be a
central element. There are two cases. If x € K, then since

P C C(x) contains elements that are not in K, the assumptions
about K are violated. On the other hand, if x ¢ K, let y be a
nontrivial element of P thatis in K. Then x € C(y) but x ¢ K, so
again, the assumptions are violated.
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The Schur-Zassenhaus theorem

Now we need to make use of a well-known theorem that we will
not prove.

Theorem (Schur-Zassenhaus)

Let G be a group and K a normal subgroup such that |K| and
[G : K] are coprime. Then G contains a complementary
subgroup H suchthat HNK =1 and HK = G. Thus G = H x K.

This famous result is Theorem 39 in Chapter 17 of Dummit and
Foote, page 829. The proof uses some basic group
cohomology. This theorem appeared in a book by Hans
Zassenhaus, who attributed it to Schur. It is usually called the
Schur-Zassenhaus theorem.
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Returning to the proof of the theorem

Returning to the group such that 1 # x € K implies C(x) C K,
the Schur-Zassenhaus theorem implies that there is a
subgroup H such that G = HK and HN K = 1. Now let X be the
space G/H of left cosets xH.

To show that G is a Frobenius group we must show that if
g € G has two fixed points in X then g = 1.
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G is a Frobenius group

We note that every coset gH has a representative in K since
KH = G. Thus there are two distinct elements k; and k, of K
such that

gle = k1H, gsz = sz.

Let h =k, 'gki. Then hH = Hso h € H. Let k = k; 'k,. Thus
1#keKand

kihk; YkoH = gkoH = koH, k—'hkH = H

so k~'hk € H.
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The end of the proof

Now consider the commutator
W' k.

Since we've proved that k~'hk € H we have
h='k~'hk = h~'(k~'hk) € H. On the other hand since K is
normal

W% ke = (W 'kh) "'k € K.

The commutator is therfore in H N K and so A~ 'k~ 'hk = 1. This
shows that # and k commute. Since C(k) C K by hypothesis we
have h € HN K and thus i = 1. Thus g = kihk; ' = 1. We have
proved that G is a Frobenius group.



	Frobenius Groups (I)
	An example
	The Dummit and Foote definition

