
Affine Varieties

1 Affine algebraic sets and their Zariski topology

There is a close association between affine varieties and certain rings. An ideal a of a ring
is called radical if a = r(a). A commutative ring A is called reduced if it has no nilpotent
elements. It is clear that if a is a radical ideal then A/a is reduced.

We continue from the previous article Zariski topology . Let F be an algebraically closed
field (so we can use the Nullstellensatz). Let X ⊆ An(F ) be a Zariski closed set. Thus
X = V (a) where a is an ideal. Since V (a) = V (r(a)) we may assume that a is a radical
ideal.

A topological space X is called reducible if we may write X = Y ∪ Z where Y and Z
are proper closed subsets. For example, let X = V (S) ⊆ A2(F ) where S = {x1x2}. Then
X = Y ∪ Z where Y and Z are the coordinate axes, so this space is reducible.

Proposition 1. Let a be a radical ideal. The Zariski closed subset V (a) is irreducible if and
only if a is prime.

Proof. This is Theorem IX.2.3 on page 382 of Lang’s Algebra. It is also homework problem
(to be assigned in Week 3), but if you look at the proof in Lang, when you do the homework
problem note that he doesn’t explain why A 6= V and B 6= V . Either write your own solution
without looking at the proof in Lang, or do look at the proof in Lang but make sure you
discuss this point clearly.

LetR = F [x1, · · · , xn] be the polynomial ring, regarded as functions on An(F ). A function
on the closed set X ⊆ An(F ) is called polynomial if it is the restriction of a polynomial in R.
Let O(X) be the ring of polynomial functions on X. Then clearly O(X) ∼= R/ ker(ϕ) where
ϕ : R −→ O(X) is the restriction homomorphism. The kernel I(X) := ker(ϕ) is the ideal
of f ∈ F [x1, · · · , xn] that vanish on X, and by the Nullstellensatz (since F is algebraically
closed and a = r(a)) we have ker(ϕ) = a. Thus O(X) ∼= R/a. This ring is called the
coordinate ring or affine algebra of X.

Definition 2. An affine algebra over F is a commutative algebra that is finitely generated
and reduced.

Note that an affine algebra is Noetherian, since it is a quotient of a polynomial algebra
over F , which is Noetherian by the Hilbert basis theorem.

1



Proposition 3. Let A be an affine algebra over the algebraically closed field F . Then A =
O(X) for some affine algebraic set X. If A is an integral domain, then X is a variety.

Proof. Let a1, · · · , an be generators of A as an algebra over F . Then there is a homomorphism
from the polynomial ring F [x1, · · · , xn] to A mapping xi to ai. Let a be the kernel of this
homomorphism, so A ∼= F [x1, · · · , xn]/a. Since A is reduced, it is easy to see that a is a
radical ideal and if X ∼= V (a) then A ∼= O(X).

We will call a Zariski closed set X a variety if it is irreducible, or equivalently if O(X) is
an integral domain. If it is not necessarily irreducible, we will call the closed set X an affine
algebraic set (or, equivalently, we can just refer to it as a Zariski closed set). Terminologies
differ: some authors do not require varieties to be irreducible.

If X ⊂ An(F ) and Y ⊂ Am(F ) are affine algebraic sets, by a morphism f : X → Y we
mean a polynomial map. Thus we require m polynomials fi ∈ F [X1, · · · , Xn] such that for
a = (a1, · · · , an) ∈ An(F ) we have

f(a1, · · · , am) = (f1(a1, · · · , an), · · · fm(a1, · · · , an)).

It is required that this map takes X into Y . The polynomials fi may not be uniquely
determined since the map is unchanged if we change fi by an element of the ideal I(X).
With this notion of morphism, affine algebraic sets form a category.

Now that we consider affine algebraic sets a category, it makes sense to loosen the con-
nection with affine spaces. We started by defining an algebraic set as a subset X = V (a)
of An, which itself has a topology (the Zariski topology). Of course X inherits a topology
from An, also called the Zariski topology. But if we chose a different embedding of X into
some other affine space Am, it would also inherit another Zariski topology from Am, and it
turns out these two topologies are the same. An easy way to see that is to note that the
correspondence between closed subsets of An and radical ideals of O(An) = F [x1, · · ·xn] can
be extended directly to a correspondence between closed subsets of X (that is, closed sub-
sets of An that are contained in X) and radical ideals of O(X) = F [x1, · · · , xn]/a. Indeed,
a closed subset Z = V (b) of An is contained in X if and only if a ⊆ b and so c = b/a is an
ideal of O(X).

Therefore we may define the Zariski topology on X directly without reference to its
embedding in a particular affine space. If c is a radical ideal of O(X), we may define
V (c) ⊆ X to be the set of a ∈ X such that f(a) = 0 for all f ∈ c, and these will be the
closed sets in X. Once we see that the Zariski topology in X can be defined this way, we
see that it is independent of the embedding of X into an affine space An.

2 Functorial properties of the affine algebra

Let X ⊆ An(F ) and Y ⊆ Am(F ) be affine algebraic sets. A polynomial map f : X −→ Y is
any map induced from a polynomial mapping from An(F ) −→ Am(F ).

Composition with f gives an algebra homomorphism f ∗ : O(Y ) −→ O(X), so the affine
algebra is a contravariant functor, from the category of affine algebraic sets to the category
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of affine algebras, or from the category of affine varieties to the category of affine algebras
that are integral domains.

In the following examples, the affine algebraic sets are all varieties, so their affine algebras
are integral domains.

Example 4. Let X = A1 and Y = A2, and define f : X −→ Y by f(a) = (a, 0). The map
f is injective but not surjective. The affine algebras are polynomial rings, O(X) = F [x] and
O(Y ) = F [x, y], and f ∗ : O(Y ) −→ O(X) is the map x→ x, y → 0. This map is surjective
but not injective.

Example 5. Let X = A2 and Y = A1 and define f : X −→ Y by f(a, b) = a. The map f
is surjective but not injective. The map on affine algebras F [x] −→ F [x, y] is the inclusion
which is injective but not surjective.

One might think from these examples that f is injective if and only if f ∗ is surjective
and vice versa, but the next example shows that this is not the case.

Example 6. Let X be the hyperbola {(a, b)|ab = 1} ⊆ A2 and let Y = A1. Define a map
f : X −→ Y by f(a, b) = a. This map is injective but not surjective. Now O(X) =
F [x1, x2]/(x1x2 − 1) where F [x1, x2] = O(A2) is the polynomial ring; if x, y are the images
of x1 and x2, then y = x−1 so O(X) = F [x, x−1]. On the other hand, O(Y ) = F [x] and
f ∗ : F [x] −→ F [x, x−1] is the inclusion map, which is injective but not surjective.

This example shows that the naive expectation that f is injective if and only if f ∗ is
surjective and vice versa is incorrect.

There is an easy criterion for f ∗ to be injective. Let us say that f : X −→ Y is dominant
if f(X) is dense in Y in the Zariski topology. The map in Example 6 is dominant but not
surjective.

Proposition 7. Let X and Y be varieties and f : X −→ Y a morphism. Then f ∗ :
O(Y ) −→ O(X) is injective if and only if f is dominant.

Proof. if φ ∈ O(Y ) define Yφ = {b ∈ Y |φ(b) 6= 0}. This is an open set since its complement
is closed, and Yφ is called a principal open set . It is easy to see that these are a basis of the
topology, meaning that every open set is a union of principal open sets. So f(X) is dense if
and only if it meets every principal open set. Now f(X) ∩ Yφ = ∅ if and only if φ vanishes
on f(X), that is, if f ∗(φ) = 0. So f(X) fails to be dense if and only if f ∗ has a nontrivial
kernel.

We assume that X and Y are varieties and f : X −→ Y is a dominant morphism, so
that f ∗ : O(Y ) −→ O(X) is injective. We may identify O(Y ) as a subring of O(X). The
next Proposition explains the geometric meaning of a prime being above another prime, in
the case of maximal ideals.

Proposition 8. Let f : X −→ Y be a dominant map. Let A = O(Y ) and B = O(X).
Identify A as a subring of B via the injective ring homomorphism f ∗. Let y ∈ Y and let p be
the maximal ideal of A consisting of functions that vanish at y. Similarly let P be the prime
of B consisting of functions that vanish at x. Then f(x) = y if and only if P ∩ A = p.
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Proof. Suppose that f(x) = y and let φ ∈ p. The image of φ in B is f ∗($) = φ ◦ f , which
then vanishes at x. We are identifying φ with its image under f ∗, so with this identification
φ ∈ B. This shows that p ⊆ A ∩P, but since p is maximal, P ∩ A = p. We leave the other
direction to the reader.

Proposition 9. Let f : X −→ Y be a dominant morphism, and assume that O(X) is
integral over O(Y ). Then f is surjective.

Proof. We will use the notations A = O(Y ), B = O(X) and identify A as a subring of B
via the injection f ∗ : A −→ B. Let y ∈ Y and let p be the maximal ideal of A consisting
of functions vanishing at y. Since B is integral over A, there exists a maximal ideal P
of B above p. (Lang, Propositions 1.10 and 1.11 in Chapter VII, page 339.) Now by the
Nullstellensatz, P consists of all functions that vanish at some point x ∈ X. Then f(x) = y
by Proposition 8.

In view of this, the failure of the dominant map f in Example 6 is related to the fact
that F [x, x−1] is not integral over F [x].

3 More on irreducibility

Earlier in these notes we defined a topological space X to be irreducible if it is not a union
of two proper closed subsets.

Proposition 10. An affine algebraic set X is irreducible if and only if O(X) is an integral
domain.

Proof. Embed X into affine space An, so O(X) = F [X1, · · · , Xn]/a for some radical ideal a.
By Proposition 1, X is irreducible if and only if a is prime, that is, if and only if the quotient
F [X1, · · · , Xn]/a is an integral domain.

A topological space is called Noetherian it satisfies the descending chain condition for
closed subsets. Thus every descending chain of closed sets X1 ⊇ X2 ⊇ · · · must eventually
terminate: Xn = Xn+1 = · · · for sufficiently large n.

Proposition 11. If X is a Noetherian space, then any set of closed subsets of X has a
minimal element.

Proof. This follows immediately from Zorn’s Lemma. Let Σ be the set of closed subsets
of X, ordered by inclusion. By the definition of a Noetherian space, every totally ordered
subset has a lower bound, so by Zorn’s Lemma, Σ has minimal elements.

Proposition 12. An affine algebraic set is a Noetherian topological space with the Zariski
topology.

4



Proof. Let X be an affine algebraic set. The Zariski closed subsets of X are in bijection
(inclusion reversing) with the radical ideals of O(X), which is a Noetherian ring. Since
O(X) thus satisfies the ascending chain condition for ideals, X satisfies the descending chain
condition for closed subsets.

Here we prove a basic property for Noetherian spaces.

Proposition 13. Let X be a Noetherian topological space. Then X admits a finite decom-
position into closed subsets:

X = X1 ∪ · · · ∪Xn.

We may clearly assume that there are no inclusion relations among the Xi, so if Xi ⊆ Xj

then i = j. With this assumption, the decomposition is unique.

Proof. It is clear that a closed subset of a Noetherian space is irreducible. Let Σ be the
set of all closed subspaces of X that do not have such irreducible decompositions. We will
show that Σ is empty. If not, then Σ has a minimal element Y by Proposition 11. Clearly
Y cannot be irreducible, so write Y = Y1 ∪ Y2 where Y1 and Y2 are proper closed subspaces
of Y . By the minimality of Y , it must be true that Y1 and Y2 is each the finite union of
irreducible subspaces, but then so is Y = Y1 ∪ Y2, which is a contradiction.

For the uniqueness relation, let X = Y1 ∪ · · · ∪ Ym be another such decomposition. We
claim that every Yi is contained in some Xj. Indeed,

Yi =
⋃
j

(Yi ∩Xj)

Since Yi is irreducible, Yi = Yi ∩Xj for some j. Similarly every Xj is contained in some Yk.
If Yi ⊆ Xj ⊆ Yk then Yi = Xj = Yk since we are assuming there are no inclusion relations
between the Yi. From this, we see that the decomposition is unique.
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