Homework 8 Solutions

Dedekind Domains

We recall that a field k is perfect if every finite extension is separable. For example, fi-
nite fields, algebraically closed fields and fields of characteristic zero are all perfect. The

field F,(X) of fractions of the polynomial ring [F,[X] is not perfect, since the extension
F,(X'?)/F,(X) is inseparable.

Problem 1. Let E/F be a finite separable field extension. Let A be a Dedekind domain
with field of fractions F' and let B be the integral closure of A in E. Thus B is a Dedekind
domain. Assume that B = Ala] for some o« € B. Let p be a maximal ideal of A. Assume
that A = A/p is a perfect field. We know that pB can be factored into maximal ideals:

P =
The quotient B; = B/%; is an extension of A. Let n = [E : F] and let f; = [B;, A]. Prove

that
.,
Z fi <n.
i=1

Hint: Let Q be an algebraic closure of A/p. Count the homomorphisms B — (2 extending
the canonical map A — A/p. You may need the assumption that A = A/p to do the
counting correctly.

Remark: The statement is true without the simplifying assumption B = A[a]. In fact, the

correct statement is
.

Z eifi =n.

i=1
See Lang, Algebraic Number Theory, Proposition 21 in Chapter I (page 24). This result is
basic in algebraic number theory, and also in the study of algebraic curves. The numbers f;
and e; are called the residue class degree and ramification index. Ramification is rare in the
sense that all e; = 1 for all but finitely many primes p of A. Indeed, assuming B = Ala] it
is easy to see that all e; = 1 unless p divides the discriminant of the irreducible polynomial
satisfied by a.



Solution. Let f(X) € F[X] be the monic irreducible polynomial satisfied by «, which by
Problem 2 of Homework 1 is in A[X]. Let f be the image of f in A[X]. Let Q be the
algebraic closure of A and let ¢ : A — Q be the canonical map A — A/p composed with
the inclusion in 2. We will count the ways of extending ¢ to a homomorphism ® : B — ().
The polynomial f may be reducible. It has at most n distinct roots, and ®(«/) must be one
of these, so there are < n such extensions.

We know from previous homeworks that the primes in the factorization of p B are exactly
the primes B; of B above p. Thus the kernel of & must be one of these primes. The image
®(a) is a root of one of the irreducible factors of f in Q. It must lie in the extension B/B; of
A. Since A is a perfect field, the extension B/%3; is separable over A, and it has f; different
embeddings in Q over A. Composing these with the canonical map B — B/B; gives f;

distinct homomorphisms B — Q extending ¢, proving >_ f; < n.

Group Representations

Problem 2. Let
G=(z,ylz" =y’ =1yzy " =27

be the nonabelian group of order 21. The cyclic group N = (z) has 7 linear characters.
Compute the induced character Ind$(x) for each of these.
Solution. We will make use of the character formula

X9 = D Xltgt™)

tEN\G

where x is x extended by zero off N to a function on G, and the summation is over a set of
representatives of the left cosets Nx. Let P = (y) be the 3-Sylow subgroup. We may choose
the representatives x to be the elements of N. Since NV is normal, the induced character will
vanish off N because y does. So

X%(9) = x(9) + x(ygy™") + X (v*g9y~?). (1)

For reference, here is the character table of G from Homework 7. Here ( is a primitive 7-th
root of unity, « = ( + 2+ (* and = (7' + (2 4+ (~*. Note that o and 8 are complex
conjugates.

1 o a7ty 9P
w11 1 1 1
x2|1 1 1 p pt
xs|1 1 1 pt p
X4|3 a [ 0 0
X513 B « 0 0




The value of x is determined by x(z) since x is a homomorphism N — C* and z generates
N. If x(z) =1 (the trivial character) then using (1) we obtain the following values.

LL’_l 2
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and in this case we see that 1¢ = x1 + x2 + x3. Next suppose that y(x) = ¢. Then (1) gives

1 o 7!y 9P
x1|]1 1 1 1 1
x4|3 a B 0 0

2

so in this case ¢ = y4. We also get x4 if x(z) = ¢? or ¢* and in the remaining cases,

x(z) = ¢, ¢ or ¢** we find that x = xs.

Problem 3. Let (m, V) be an irreducible representation of the finite group G, with character
X- Let C be a conjugacy class of G and let g € C. Prove that
x(9)
C|

x(1)
is an algebraic integer, i.e. and element of Q that is integral over Z.

Hint: Let Cy,---,C; be the conjugacy classes of G, and let g; be a representative of each
Ci- Let € =) . g; it is easy to see that these elements span the center of C[G]. Deduce
that the quantities |C;|x(g:)/x(1) span a finitely generated Z-subalgebra of C.

Solution. The €; are central since conjugation by an element of G just permutes the
summands g € C;. They are elements of Z[G], and are a C-basis of Z(C[G]) since any
element of the center must be of the form ) a, - g where a, is constant on conjugacy classes,
which implies that > a, - ¢ decomposes as a linear combination of the €;. Now &;,&; € Z|G|
has Z-coefficients so when we express it as a sum €;&; = > a;;,€; the coefficients a;;; are
(nonnegative) integers.

Now by Problem 6 of Homework 7 there exists C-algebra homomorphism w, : Z(C[G]) —
C such that if £ € Z(C[G]) then & acts by the scalar w,(£) on the module V. Applying this
to €; we see that w,(&;) are complex numbers satisfying

we(@)wn(€) =D ayrwn(€r),  ay € L.
k
Their Z-span is a finitely generated Z-module that is a faithful Z[w,(&;)]-module and so the

wr(€;) are integral over Z. By Problem 6 of Homework 7 the advertised values |C \% are
these numbers.



Problem 4. Let G be a finite group and H a subgroup of index two. Let (m, V) be
an irreducible representation of H. Prove that either Ind%(7) is irreducible, or 7 can be
extended to an irreducible representation of G. And in the second case, show that there are
two such extensions.

Solution. Let y be the character of H and x¢ the induced character of G. By Frobenius
reciprocity
X% xa= X" x)n-

This is the multiplicity of 7 in 7% when it is restricted back to H. In other words, the
induced module V& is a G-module, but we can restrict it back to H and decompose it into
irreducible H-modules, and if we write

Ve =Pau;

where U; are the distinct irreducibles, one of the U; is V, and d; = (X%, x)u, but Schur
orthogonality. Now dim(V%) = 2dim(V) and so d; < 2.
Since (x¢, x“) is thus seen to be < 2, either ¢ is irreducible or the inner product is 2.

Decompose V& into irreducible G-modules:

VG = @ CZV;

This means that Y c? = (x“,x%)¢ = 2 so two of the ¢; are 1, and the others are zero.
Suppose that ¢; = ¢ = 1 and
VE=Vi® V.

Let v, and 9, be the characters of V; and Va. Then ¢; = (x%, ;)¢ = 1 for i = 1,2 and by
Frobenius reciprocity (x, )y = 1, meaning that V;, when restricted to H, contains a copy
of V. Therefore dim(V;) > dim(V). But dim(V%) = 2dim(V) so dim(V;) = dim(V).

Now if Vj is restricted back to H, it must coincide with V' because it contains a copy of
V' but has the same dimension. So we may identify V; = V' as vector spaces, and what we
have shown is that there are two extensions of the H-module structure of V' to G.

Problem 5. Let G be a finite group and let V' be an irreducible C[G]-module, with character
X. Define the Frobenius-Schur indicator

1 2
0 =1 > x(@”).

geG

Prove that £(x) = 0 unless x is real-valued, in which case it equals +1. Then e(y) = 1
if the symmetric square module has a nonzero invariant vector (i.e. dim(VZV)¢ = 1) and
e(x) = —1if dim(AV)% = 1.

Solution. This is a continuation of Problem 5 in Homework 7. The tensor square module
®2%V decomposes as a direct sum of the symmetric square and exterior square modules



V2V and A2V, which may be realized as the +1 and —1 eigenspaces of the endomorphism
xRy y®ax of ®V. The characters of these were computed in the quoted problem as:

®*V | VIV A2V
xX(9)? ] $(x(9)* + x(¢?) [ 3(x(9)* — x(¢D)

Now let us argue that the space of invariants (®2V)¢ is at most one dimensional, and indeed
is one-dimensional if and only if x(g) is real-valued. Indeed, using Problem 3 of Homework 6,
the dimension of the space of invariants is

|Zx X) - 2)

gelG

Now x and Y are both irreducible characters, so by Schur orthogonality

dim (2°V) = { b ix=x

0 otherwise.
Now (®%V)¢ is at most one dimensional, and it decomposes as
(\V2V)Y @ (A?V)C.

If x # X both of these are subspaces of a O-dimensional vector space, so they are also zero.

Thus
G - Z = a1 Z xg =0

Subtracting these two equations gives €(x) = 0. On the other hand if y = ¥ is a real character
then (V2V)¢ @ (A*V)Y is one-dimensional, so one of these spaces is one-dimensional, the
other zero dimensional. Suppose for example that dim (V2V)¢ = 1. Then by another
application of Problem 3 of Homework 6 we get

Z x(9))

gEG
and we also know by (2) that
1G] Z X(9
geG
Therefore () = 1. The case where dim (V2V)¢ = —1 is similar.

Mackey theory is concerned with intertwining operators (i.e. C[G]-module homomor-
phisms) between induced representations. It is a powerful tool, and often exactly what is
needed for some problem. Here is one version.



Theorem 1 (Mackey). Let G be a finite group and let Hy, Hy be subgroups. Let (my,V})
and (ma, V) be representations of Hy, Hy respectively. If v € G and let H, = Hy N yHyy ™t
Define a representation w., of H, by

my(h) = m (v~ h).

Then as vector spaces

Homgg (Indg1 (1), Indg2 (m9)) = @ Homcg ) (7, m2).
~yEH2\G/H

The notation means that we take a sum over a set of representatives v for the set of double
cosets HyyH;.

Proof. We will prove this in the lectures, or see Lang’s Algebra, Theorem 7.7 on page 695. [

Problem 6. Let F' be a finite field. Let G = GL(2, F') and let B be the subgroup

Yy X
B= yp € FX zcFy.
{(0 yz)"yly? ’ }

Let x1, x2 be linear characters of F'*. Define a linear character x of B by

X ( 161 ;2 ) = X1(y1)x2(y2) (3)

and let 7(x1, x2) = Ind%(x). Now let ¥, and 1, be two more linear characters of F*.
dim Hom(m(x1, x2), m(¢¥1,19)) = A+ B
where

A L if x1 =91, X2 = Vo, B 1 if x1 = 9, x2 = ¢,
| 0 otherwise, | 0 otherwise.

Deduce that m(x1, x2) is irreducible if x; # x2 and isomorphic to 7(xa, X1)-

This problem shows how powerful Mackey’s theorem is with a typical application. Prob-
lem 5 constructs about half the irreducible representations of GL(2, F').

Solution: We wish to apply Mackey’s theorem, so we need to determine the double cosets
B\G/B. There are 2, since if g € G is not in B = B - 1 - B then

a b .
g—(c d)’ with ¢ # 0

()

6

and then with



we have

1 a/c c d
g:( { >w< _C_lA), A = ad — be

showing that ¢ € BwB. We may thus take the double coset representatives in Mackey’s
theorem to be v € {1¢, w}.
Now the subgroups H, = BN~yBy~! are
Hy, = B, H,=T,

G

TZ{(yl >!y1,y2€FX}.
Y2

Now we turn to Mackey’s theorem. We must compute Home(z, | (m,, m2) where 7y is the linear
character

where

(0 < ot ) = 1 (y1)v2(y2)

0
and 7, is x defined by (3) if v = 1, and

u ( s " ) ="X ( - " ) = X2(y1)x1(y2)

if v = w. The H, modules corresponding to the linear characters m, and m, are one-
dimensionsional, so they are irreducible, and the Hom space is nonzero if and only if they
are equal. So

1 if x1 =91, x2 = o,

HOIH(C[ch](mG,?TQ) = Homgp) (X, ¥) = { 0 otherwise

and '
L if x1 = 9, X2 = ¥,

Homcp,,) (7w, m2) = Homeyr (Y x, 1) = { 0 otherwise.

This proves the first statement. For the second, assume that x; # x2 and compute dim Homgg(7(x1, X2), 7
Then A=1and B=0so

dim Homge(7(x1, x2), 7(x1, x2)) = 1.
This implies that 7(x1, x2) is irreducible. Also we may compute
dim Homeg)(7(x1, X2), 7(X2, x1)) = 1

since for this calculation A = 0 and B = 1. This implies that the irreducible representations
(X1, x2) and (2, x1) are nonisomorphic.



