
Homework 8 Solutions

Dedekind Domains

We recall that a field k is perfect if every finite extension is separable. For example, fi-
nite fields, algebraically closed fields and fields of characteristic zero are all perfect. The
field Fp(X) of fractions of the polynomial ring Fp[X] is not perfect, since the extension
Fp(X1/p)/Fp(X) is inseparable.

Problem 1. Let E/F be a finite separable field extension. Let A be a Dedekind domain
with field of fractions F and let B be the integral closure of A in E. Thus B is a Dedekind
domain. Assume that B = A[α] for some α ∈ B. Let p be a maximal ideal of A. Assume
that A = A/p is a perfect field. We know that pB can be factored into maximal ideals:

pB = Pe1
1 · · ·Per

r .

The quotient Bi = B/Pi is an extension of A. Let n = [E : F ] and let fi =
[
Bi, A

]
. Prove

that
r∑
i=1

fi 6 n.

Hint: Let Ω be an algebraic closure of A/p. Count the homomorphisms B −→ Ω extending
the canonical map A −→ A/p. You may need the assumption that A = A/p to do the
counting correctly.

Remark: The statement is true without the simplifying assumption B = A[α]. In fact, the
correct statement is

r∑
i=1

eifi = n.

See Lang, Algebraic Number Theory , Proposition 21 in Chapter I (page 24). This result is
basic in algebraic number theory, and also in the study of algebraic curves. The numbers fi
and ei are called the residue class degree and ramification index . Ramification is rare in the
sense that all ei = 1 for all but finitely many primes p of A. Indeed, assuming B = A[α] it
is easy to see that all ei = 1 unless p divides the discriminant of the irreducible polynomial
satisfied by α.
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Solution. Let f(X) ∈ F [X] be the monic irreducible polynomial satisfied by α, which by
Problem 2 of Homework 1 is in A[X]. Let f be the image of f in A[X]. Let Ω be the
algebraic closure of A and let φ : A −→ Ω be the canonical map A −→ A/p composed with
the inclusion in Ω. We will count the ways of extending φ to a homomorphism Φ : B −→ Ω.
The polynomial f may be reducible. It has at most n distinct roots, and Φ(α) must be one
of these, so there are 6 n such extensions.

We know from previous homeworks that the primes in the factorization of pB are exactly
the primes Pi of B above p. Thus the kernel of Φ must be one of these primes. The image
Φ(α) is a root of one of the irreducible factors of f in Ω. It must lie in the extension B/Pi of
A. Since A is a perfect field, the extension B/Pi is separable over A, and it has fi different
embeddings in Ω over A. Composing these with the canonical map B −→ B/Pi gives fi
distinct homomorphisms B −→ Ω extending φ, proving

∑
fi 6 n.

Group Representations

Problem 2. Let
G = 〈x, y|x7 = y3 = 1, yxy−1 = x2〉

be the nonabelian group of order 21. The cyclic group N = 〈x〉 has 7 linear characters.
Compute the induced character IndGN(χ) for each of these.

Solution. We will make use of the character formula

χG(g) =
∑
t∈N\G

χ̇(tgt−1)

where χ̇ is χ extended by zero off N to a function on G, and the summation is over a set of
representatives of the left cosets Nx. Let P = 〈y〉 be the 3-Sylow subgroup. We may choose
the representatives x to be the elements of N . Since N is normal, the induced character will
vanish off N because χ̇ does. So

χG(g) = χ̇(g) + χ̇(ygy−1) + χ̇(y2gy−2). (1)

For reference, here is the character table of G from Homework 7. Here ζ is a primitive 7-th
root of unity, α = ζ + ζ2 + ζ4 and β = ζ−1 + ζ−2 + ζ−4. Note that α and β are complex
conjugates.

1 x x−1 y y2

χ1 1 1 1 1 1
χ2 1 1 1 ρ ρ−1

χ3 1 1 1 ρ−1 ρ
χ4 3 α β 0 0
χ5 3 β α 0 0
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The value of χ is determined by χ(x) since χ is a homomorphism N → C× and x generates
N . If χ(x) = 1 (the trivial character) then using (1) we obtain the following values.

1 x x−1 y y2

χ1 1 1 1 1 1
1G 3 3 3 0 0

and in this case we see that 1G = χ1 +χ2 +χ3. Next suppose that χ(x) = ζ. Then (1) gives

1 x x−1 y y2

χ1 1 1 1 1 1
χ4 3 α β 0 0

so in this case χG = χ4. We also get χ4 if χ(x) = ζ2 or ζ4 and in the remaining cases,
χ(x) = ζ−1, ζ−2 or ζ−4 we find that χG = χ5.

Problem 3. Let (π, V ) be an irreducible representation of the finite group G, with character
χ. Let C be a conjugacy class of G and let g ∈ C. Prove that

|C|χ(g)

χ(1)

is an algebraic integer, i.e. and element of Q that is integral over Z.

Hint: Let C1, · · · , Ch be the conjugacy classes of G, and let gi be a representative of each
Ci. Let Ci =

∑
g∈Ci g; it is easy to see that these elements span the center of C[G]. Deduce

that the quantities |Ci|χ(gi)/χ(1) span a finitely generated Z-subalgebra of C.

Solution. The Ci are central since conjugation by an element of G just permutes the
summands g ∈ Ci. They are elements of Z[G], and are a C-basis of Z(C[G]) since any
element of the center must be of the form

∑
ag · g where ag is constant on conjugacy classes,

which implies that
∑
ag · g decomposes as a linear combination of the Ci. Now CiCj ∈ Z[G]

has Z-coefficients so when we express it as a sum CiCj =
∑

k aijkCk the coefficients aijk are
(nonnegative) integers.

Now by Problem 6 of Homework 7 there exists C-algebra homomorphism ωπ : Z(C[G]) −→
C such that if ξ ∈ Z(C[G]) then ξ acts by the scalar ωπ(ξ) on the module V . Applying this
to Ci we see that ωπ(Ci) are complex numbers satisfying

ωπ(Ci)ωπ(Cj) =
∑
k

aijkωπ(Ck), aijk ∈ Z.

Their Z-span is a finitely generated Z-module that is a faithful Z[ωπ(Ci)]-module and so the

ωπ(Ci) are integral over Z. By Problem 6 of Homework 7 the advertised values |C|χ(g)
χ(1)

are
these numbers.
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Problem 4. Let G be a finite group and H a subgroup of index two. Let (π, V ) be
an irreducible representation of H. Prove that either IndGH(π) is irreducible, or π can be
extended to an irreducible representation of G. And in the second case, show that there are
two such extensions.

Solution. Let χ be the character of H and χG the induced character of G. By Frobenius
reciprocity

〈χG, χG〉G = 〈χG, χ〉H .

This is the multiplicity of π in πG when it is restricted back to H. In other words, the
induced module V G is a G-module, but we can restrict it back to H and decompose it into
irreducible H-modules, and if we write

V G =
⊕

diUi

where Ui are the distinct irreducibles, one of the Ui is V , and di = 〈χG, χ〉H , but Schur
orthogonality. Now dim(V G) = 2 dim(V ) and so di 6 2.

Since 〈χG, χG〉 is thus seen to be 6 2, either χG is irreducible or the inner product is 2.
Decompose V G into irreducible G-modules:

V G =
⊕

ciVi.

This means that
∑
c2i = 〈χG, χG〉G = 2 so two of the ci are 1, and the others are zero.

Suppose that c1 = c2 = 1 and
V G = V1 ⊕ V2.

Let ψ1 and ψ2 be the characters of V1 and V2. Then ci = 〈χG, ψi〉G = 1 for i = 1, 2 and by
Frobenius reciprocity 〈χ, ψi〉H = 1, meaning that Vi, when restricted to H, contains a copy
of V . Therefore dim(Vi) > dim(V ). But dim(V G) = 2 dim(V ) so dim(Vi) = dim(V ).

Now if Vi is restricted back to H, it must coincide with V because it contains a copy of
V but has the same dimension. So we may identify Vi = V as vector spaces, and what we
have shown is that there are two extensions of the H-module structure of V to G.

Problem 5. Let G be a finite group and let V be an irreducible C[G]-module, with character
χ. Define the Frobenius-Schur indicator

ε(χ) =
1

|G|
∑
g∈G

χ(g2).

Prove that ε(χ) = 0 unless χ is real-valued, in which case it equals ±1. Then ε(χ) = 1
if the symmetric square module has a nonzero invariant vector (i.e. dim(∨2V )G = 1) and
ε(χ) = −1 if dim(∧V )G = 1.

Solution. This is a continuation of Problem 5 in Homework 7. The tensor square module
⊗2V decomposes as a direct sum of the symmetric square and exterior square modules
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∨2V and ∧2V , which may be realized as the +1 and −1 eigenspaces of the endomorphism
x⊗ y 7→ y ⊗ x of ⊗2V . The characters of these were computed in the quoted problem as:

⊗2V ∨2V ∧2V
χ(g)2 1

2
(χ(g)2 + χ(g2)) 1

2
(χ(g)2 − χ(g2))

Now let us argue that the space of invariants (⊗2V )G is at most one dimensional, and indeed
is one-dimensional if and only if χ(g) is real-valued. Indeed, using Problem 3 of Homework 6,
the dimension of the space of invariants is

1

|G|
∑
g∈G

χ(g)2 = 〈χ, χ〉 . (2)

Now χ and χ are both irreducible characters, so by Schur orthogonality

dim (⊗2V )G =

{
1 if χ = χ,
0 otherwise.

Now (⊗2V )G is at most one dimensional, and it decomposes as

(∨2V )G ⊕ (∧2V )G.

If χ 6= χ both of these are subspaces of a 0-dimensional vector space, so they are also zero.
Thus

1

|G|
∑
g∈G

1

2
(χ(g)2 + χ(g2)) =

1

|G|
∑
g∈G

1

2
(χ(g)2 − χ(g2)) = 0.

Subtracting these two equations gives ε(χ) = 0. On the other hand if χ = χ is a real character
then (∨2V )G ⊕ (∧2V )G is one-dimensional, so one of these spaces is one-dimensional, the
other zero dimensional. Suppose for example that dim (∨2V )G = 1. Then by another
application of Problem 3 of Homework 6 we get

1 =
1

|G|
∑
g∈G

1

2
(χ(g)2 + χ(g2))

and we also know by (2) that

1 =
1

|G|
∑
g∈G

χ(g)2.

Therefore ε(χ) = 1. The case where dim (∨2V )G = −1 is similar.
Mackey theory is concerned with intertwining operators (i.e. C[G]-module homomor-

phisms) between induced representations. It is a powerful tool, and often exactly what is
needed for some problem. Here is one version.
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Theorem 1 (Mackey). Let G be a finite group and let H1, H2 be subgroups. Let (π1, V1)
and (π2, V2) be representations of H1, H2 respectively. If γ ∈ G and let Hγ = H2 ∩ γH1γ

−1.
Define a representation πγ of Hγ by

πγ(h) = π1(γ
−1hγ).

Then as vector spaces

HomC[G](IndGH1
(π1), IndGH2

(π2)) ∼=
⊕

γ∈H2\G/H1

HomC[Hγ ](πγ, π2).

The notation means that we take a sum over a set of representatives γ for the set of double
cosets H2γH1.

Proof. We will prove this in the lectures, or see Lang’s Algebra, Theorem 7.7 on page 695.

Problem 6. Let F be a finite field. Let G = GL(2, F ) and let B be the subgroup

B =

{(
y1 x
0 y2

)
|y1, y2 ∈ F×, x ∈ F

}
.

Let χ1, χ2 be linear characters of F×. Define a linear character χ of B by

χ

(
y1 x
0 y2

)
= χ1(y1)χ2(y2) (3)

and let π(χ1, χ2) = IndGB(χ). Now let ψ1 and ψ2 be two more linear characters of F×.

dim Hom(π(χ1, χ2), π(ψ1, ψ2)) = A+B

where

A =

{
1 if χ1 = ψ1, χ2 = ψ2,
0 otherwise,

B =

{
1 if χ1 = ψ2, χ2 = ψ1,
0 otherwise.

Deduce that π(χ1, χ2) is irreducible if χ1 6= χ2 and isomorphic to π(χ2, χ1).

This problem shows how powerful Mackey’s theorem is with a typical application. Prob-
lem 5 constructs about half the irreducible representations of GL(2, F ).

Solution: We wish to apply Mackey’s theorem, so we need to determine the double cosets
B\G/B. There are 2, since if g ∈ G is not in B = B · 1G ·B then

g =

(
a b
c d

)
, with c 6= 0

and then with

w =

(
1

1

)
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we have

g =

(
1 a/c

1

)
w

(
c d
−c−1∆

)
, ∆ = ad− bc

showing that g ∈ BwB. We may thus take the double coset representatives in Mackey’s
theorem to be γ ∈ {1G, w}.

Now the subgroups Hγ = B ∩ γBγ−1 are

H1G = B, Hw = T,

where

T =

{(
y1

y2

)
|y1, y2 ∈ F×

}
.

Now we turn to Mackey’s theorem. We must compute HomC[Hγ ](πγ, π2) where π2 is the linear
character

ψ

(
y1 ∗
0 y2

)
= ψ1(y1)ψ2(y2)

and πγ is χ defined by (3) if γ = 1, and

πγ

(
y1

y2

)
= wχ

(
y1

y2

)
:= χ2(y1)χ1(y2)

if γ = w. The Hγ modules corresponding to the linear characters πγ and π2 are one-
dimensionsional, so they are irreducible, and the Hom space is nonzero if and only if they
are equal. So

HomC[H1G
](π1G , π2) = HomC[B](χ, ψ) =

{
1 if χ1 = ψ1, χ2 = ψ2,
0 otherwise,

and

HomC[Hw](πw, π2) = HomC[T ](
wχ, ψ) =

{
1 if χ1 = ψ2, χ2 = ψ1,
0 otherwise.

This proves the first statement. For the second, assume that χ1 6= χ2 and compute dim HomC[G](π(χ1, χ2), π(χ1, χ2)).
Then A = 1 and B = 0 so

dim HomC[G](π(χ1, χ2), π(χ1, χ2)) = 1.

This implies that π(χ1, χ2) is irreducible. Also we may compute

dim HomC[G](π(χ1, χ2), π(χ2, χ1)) = 1

since for this calculation A = 0 and B = 1. This implies that the irreducible representations
π(χ1, χ2) and π(χ2, χ1) are nonisomorphic.
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