
Homework 7 Solutions

Dedekind Domains

Problem 1. Let A be a Dedekind domain and let a, b be nonzero ideals. We say that a
divides b and write a|b if b = ac for some ideal c. Show that a|b if and only if a ⊇ b.

Solution. If a|b any element of b = ac is clearly in a, so a ⊇ b. Conversely, if a ⊇ b let

a−1 = {x ∈ F |xa ⊆ A}.

Clearly a−1 ⊆ b−1 so if we define c to be the fractional ideal a−1b then c ⊆ b−1b = A
by the invertibility of fractional ideals (Homework 4, Problem 4). Thus c is an ideal, and
b = aa−1b = ac, proving that a|b.

Problem 2. Let K/F be a finite separable extension, and let A be a Dedekind domain
whose field of fractions is F . Let B be the integral closure of A in K. By Problem 2 in
Homework 4, B is also a Dedekind domain. Let P be a maximal ideal of B. Show that
P ∩ A is a nonzero prime ideal of A. Furthermore if p is a maximal ideal of A, prove that
P ∩ A = p if and only if P|pB.

Solution. To prove that P ∩ A is nonzero, let 0 6= x ∈ P. Let E be the normal closure of
K, and let C be the integral closure of A in E. Then by the formula at the top of Page 285
of Lang’s Algebra the norm

N(x) =
∏

σ(x)

where the product is over the set E of embeddings σ : K −→ E over F . Let σ0 ∈ E be the
embedding that maps x to itself. Then

N(x)

x
=

∏
σ 6=σ0

σ(x)

is integral over A. Moreover N(x) ∈ F while x ∈ K so N(x)/x ∈ K. Therefore N(x)/x ∈ B
since B is the integral closure of A in K. It follows that N(x) = (N(x)/x) · x ∈ P is a
nonzero element of A ∩P.

Let us prove the divisibility assertions. First suppose that P ∩ A = p. Then

pB = (P ∩ A)B ⊆ PB = P

so P|pB by Problem 1. Conversely assume that P|pB. By Problem 1, p ⊂ pB ⊆ P. Thus
p ⊆ P ∩ A. Since p is maximal, it follows that P ∩ A = p.
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Group representations

Let G be a group. Recall that the commutator subgroup or derived group G′ is the subgroup
generated by commutators [x, y] = xyx−1y−1. As we discussed in class, it is a normal
subgroup and G/G′ is abelian. Moreover any homomorphism G −→ A, where A is an
abelian group, factors uniquely through the quotient G/G′.

Also recall that the characters of the one-dimensional representations of G are called
linear characters . It is easy to see that these are just the homomorphisms G −→ C×. Thus
every linear character factors through G/G′.

Problem 3. Let G be a nonabelian group of order 21 with presentation

G = 〈x, y|x7 = y3 = 1, yxy−1 = x2〉.

Determine the conjugacy classes and give a representative gi for each. To describe a character
χ of G it is sufficient to tell us χ(gi) for each conjugacy class representatives. Let Q =
〈x〉 be the 7-Sylow subgroup, which is normal. Show that Q = G′ and determine the
linear characters of G. Use this information to determine the total number of irreducible
representations and their degrees.

Solution. The conjugacy classes are {1}, {x, x2, x4}, {x−1, x−2, x−4}, {yxi|0 6 i < 7} and
{y2xi|0 6 i < 7}. There are 5 conjugacy classes, so there are 5 irreducible representations.

By the Sylow theorem, Q is normal, and G/Q ∼= Z3 is abelian, so G′ is contained in Q.
On the other hand xyx−1y−1 = x−1 so G′ ⊇ 〈x〉 = Q. Thus G′ = Q.

Since G/G′ ∼= Z3 there are 3 linear characters. Thus if d1, · · · , d5 are the character
degrees we have d1 = d2 = d3 = 1 and

∑
d2i = 21. The only possibility is that d2 = d3 = 3.

Problem 4. Continuing from Problem 3, note that if ζ is a 7-th root of unity and

ξ =

 ζ
ζ2

ζ4

 , η =

 1
1

1


then ξ7 = η3 = I (the identity matrix) and ηξη−1 = ξ2. Use this information to construct
an irreducible representation of G and finish computing the character table.

Solution. The linear characters are the characters of G/Q ∼= Z3 which may be pulled back
to G under the canonical homomorphism G −→ G/Q. If ρ = e2πi/3 we obtain 3 linear
characters:

1 x x−1 y y2

χ1 1 1 1 1 1
χ2 1 1 1 ρ ρ−1

χ3 1 1 1 ρ−1 ρ

Now since ξ and η satisfy the defining relations of G there is a homomorphism π : G −→
GL(V ) such that π(x) = ξ and π(y) = η. Let α = ζ + ζ2 + ζ4 and β = α = ζ−1 + ζ−2 + ζ−4.
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We see that the character χ of π satisfies χ(x) = α and χ(x−1) = β. Furthermore tr(ηξi) = 0
so this character has known values. Let us check that χ is irreducible. We have

〈χ, χ〉 =
1

21
(χ(1)2 + 3|χ(x)|2 + 3|χ(x−1)|2) =

1

21
(9 + 6αβ).

Note that αβ = 3 + ζ+ ζ2 + ζ3 + ζ4 + ζ5 + ζ6 = 2 so 〈χ, χ〉 = 1, proving that χ is irreducible.
We obtain another degree 3 representation on replacing ζ by ζ−1, and we may now complete
the character table:

1 x x−1 y y2

χ1 1 1 1 1 1
χ2 1 1 1 ρ ρ−1

χ3 1 1 1 ρ−1 ρ
χ4 3 α β 0 0
χ5 3 β α 0 0

If V is the category of finite dimensional vector spaces and F is a functor from V to itself,
we may apply F to a representation π : G −→ GL(V ): defining

(Fπ)(g) = F(π(g)) : FV −→ FV

gives a representation Fπ : G −→ GL(FV ). In the next exercise we consider the functors of
tensor square, exterior square and symmetric square, which we will denote ⊗2, ∧2 and ∨2.

Problem 5. Let V be a C[G]-module, and let π : G −→ GL(V ) be a representation. Let
χ : G −→ C be the character of π. Show that the characters of ⊗2π, ∧2π and ∨2π are

⊗2χ(g) = χ(g)2, ∧2χ(g) =
1

2
(χ(g)2 − χ(g2)), ∨2χ(g) =

1

2
(χ(g)2 + χ(g2)).

Hint: Express these in terms of the eigenvalues of π(g).

Solution: Let v2, · · · , vd be the eigenvectors of π(g), and εi the corresponding eigenvalues.
Then vi ⊗ vj are a basis of ⊗2V and the corresponding eigenvalues of π(g) ⊗ π(g) are εiεj.
Thus

⊗2χ(g) =
d∑

i,j=1

εiεj = χ(g)2.

The vi ∧ vj with i < j are the eigenvalues of ∧2π(g) on V ∧ V and so

∧2χ(g) =
∑
i<j

εiεj.

The vi ∨ vj with i 6 j are the eigenvalues of ∨2π(g) on V ∨ V and so

∨2χ(g) =
∑
i6j

εiεj.
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Now the eigenvalues of π(g2) are ε2i so

χ(g2) =
∑
i

ε2i , χ(g)2 − χ(g2) = 2
∑
i<j

εiεj,

χ(g2) + χ(g2) = 2
∑
i6j

εiεj

and the result follows.

Problem 6. Let π : G −→ GL(V ) be a finite-dimensional complex representation of the
finite group G. Note that π extends to a C-algebra homomorphism C[G] −→ End(V ), also
denoted π. Let Z be the center of C[G]. Show that there exists a C-algebra homomorphism
ωπ : Z −→ C such that π(ξ)v = ωπ(ξ)v for ξ ∈ Z, called the central character of π. Let
g ∈ G and let C be the conjugacy class of g. Let C be a conjugacy class of G. Observe that
C =

∑
h∈C h ∈ Z. Prove that

ωπ(C) =
χ(g)|C|
χ(1)

.

where χ is the character of π.

Solution. First note that if ξ ∈ Z then π(ξ)π(g) = π(g)π(ξ). By Schur’s Lemma, π(ξ) is a
scalar endomorphism of V . Let ωπ(ξ) be its scalar eigenvalue, so

π(ξ)v = ωπ(ξ)v.

If ξ, η ∈ Z then
ωπ(ξ)ωπ(η) = π(ξ)π(η)IV = π(ξη)IV = ωπ(ξη)

and ωπ : Z −→ C is a C-algebra homomorphism.
Applying this to C =

∑
h∈C h, which is evidently central, let λ = ωπ(C). We have

λv = π(C)v =
∑
g∈C

π(h)v.

To compute λ, we take the trace. Since χ(1) = dim(V )

χ(1)λ = tr(λIV ) =
∑
g∈C

χ(g) = |C|χ(g)

snd so λ has the advertised value.
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