Homework 7 Solutions

Dedekind Domains

Problem 1. Let A be a Dedekind domain and let a, b be nonzero ideals. We say that a
divides b and write a|b if b = ac for some ideal ¢. Show that a|b if and only if a D b.

Solution. If a|b any element of b = ac is clearly in a, so a O b. Conversely, if a O b let
a ! ={r € Flza C A}.

Clearly a=! C b~! so if we define ¢ to be the fractional ideal a='b then ¢ C b™'b = A
by the invertibility of fractional ideals (Homework 4, Problem 4). Thus ¢ is an ideal, and
b = aa'b = ac, proving that alb.

Problem 2. Let K/F be a finite separable extension, and let A be a Dedekind domain
whose field of fractions is F'. Let B be the integral closure of A in K. By Problem 2 in
Homework 4, B is also a Dedekind domain. Let 3 be a maximal ideal of B. Show that
BN A is a nonzero prime ideal of A. Furthermore if p is a maximal ideal of A, prove that
PN A=pif and only if B|pB.

Solution. To prove that B N A is nonzero, let 0 # x € B. Let E be the normal closure of
K, and let C' be the integral closure of A in E. Then by the formula at the top of Page 285
of Lang’s Algebra the norm

N(z) =[] o(x)

where the product is over the set £ of embeddings ¢ : K — E over F. Let 0y € £ be the
embedding that maps x to itself. Then

o#oo

is integral over A. Moreover N(x) € F while x € K so N(x)/x € K. Therefore N(x)/xz € B
since B is the integral closure of A in K. It follows that N(z) = (N(z)/z) -z € B is a
nonzero element of A NP.

Let us prove the divisibility assertions. First suppose that 8 N A = p. Then

pB=(PNABCPB =P

so B|pB by Problem 1. Conversely assume that B|pB. By Problem 1, p C pB C*B. Thus
p C PN A. Since p is maximal, it follows that PT N A = p.
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Group representations

Let G be a group. Recall that the commutator subgroup or derived group G’ is the subgroup
generated by commutators [z,y] = zyz~'y~!'. As we discussed in class, it is a normal
subgroup and G/G’ is abelian. Moreover any homomorphism G — A, where A is an
abelian group, factors uniquely through the quotient G/G’.

Also recall that the characters of the one-dimensional representations of G are called
linear characters. It is easy to see that these are just the homomorphisms G — C*. Thus
every linear character factors through G/G’.

Problem 3. Let G be a nonabelian group of order 21 with presentation
G = (z,ylz" =9* = 1,yoy~ " = 2?).

Determine the conjugacy classes and give a representative g; for each. To describe a character
x of G it is sufficient to tell us x(g;) for each conjugacy class representatives. Let ¢ =
(x) be the 7-Sylow subgroup, which is normal. Show that @ = G’ and determine the
linear characters of G. Use this information to determine the total number of irreducible
representations and their degrees.

Solution. The conjugacy classes are {1}, {z, 22 z*}, {z71, 272 271}, {y2'|0 < i < 7} and
{y22'|0 < i < 7}. There are 5 conjugacy classes, so there are 5 irreducible representations.
By the Sylow theorem, @ is normal, and G/Q = Zj3 is abelian, so G’ is contained in Q.
On the other hand xyz~'y™! = 27! so G’ D (z) = Q. Thus G’ = Q.
Since G/G" = Z3 there are 3 linear characters. Thus if dy,--- ,ds are the character
degrees we have dy = dy = d3 =1 and Y d? = 21. The only possibility is that dy = d3 = 3.

Problem 4. Continuing from Problem 3, note that if ¢ is a 7-th root of unity and

¢ 1
{= ¢? ,on= 1
¢! 1
then £7 = = I (the identity matrix) and nén~! = 2. Use this information to construct
an irreducible representation of GG and finish computing the character table.

Solution. The linear characters are the characters of G/Q) = Z3 which may be pulled back

to G under the canonical homomorphism G — G/Q. If p = €>™/3 we obtain 3 linear
characters:
1 o 27ty P
w11 1 1 1
x2|1 1 1 p p!
xs|1 1 1 p' p

Now since ¢ and 7 satisfy the defining relations of G there is a homomorphism 7 : G —
GL(V) such that 7(z) = and w(y) =n. Let a =+ +¢tand B=a =1+ 2+
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We see that the character y of 7 satisfies x(z) = @ and y(z~!) = 8. Furthermore tr(n¢’) = 0
so this character has known values. Let us check that y is irreducible. We have

(o) = (1 3@ + 3 P) = 50+ 6aB).

Note that aff =3+ +?+C+¢*+°+¢% =250 (x, x) = 1, proving that y is irreducible.
We obtain another degree 3 representation on replacing ¢ by (7!, and we may now complete
the character table:

-1 2

1 =z =z Yoy
il 1 1 1 1
x2|1 1 1 p pt
xs|1 1 1 pt p
x4|3 a B 0 0
X513 6 a 0 0

If V is the category of finite dimensional vector spaces and F is a functor from V to itself,
we may apply F to a representation 7 : G — GL(V'): defining

(Fm)(g) = F(n(g)) : FV — FV

gives a representation Fr: G — GL(FV). In the next exercise we consider the functors of
tensor square, exterior square and symmetric square, which we will denote ®2, A% and V2.

Problem 5. Let V' be a C|G]-module, and let 7 : G — GL(V') be a representation. Let
X : G — C be the character of w. Show that the characters of @2, A%z and V27 are

1 1
@*x(9) = x(9)",  Ax(9) = 5(x(9)° —x(¢7),  Vx(9) = 5(x(9)* + x(9°))-
Hint: Express these in terms of the eigenvalues of 7(g).
Solution: Let vy, - -+ , vy be the eigenvectors of 7(g), and &; the corresponding eigenvalues.

Then v; ® v; are a basis of ®?V and the corresponding eigenvalues of 7(g) ® 7(g) are €;¢;.
Thus

@°x(9) = Y _ g = x(9)*.

ij=1
The v; Av; with i < j are the eigenvalues of A*mr(g) on V AV and so
Nx(g) = e
i<j

The v; V v; with ¢ < j are the eigenvalues of V27 (g) on V'V V and so

Vix(g) = Z Ei€;.

1<J



Now the eigenvalues of 7(g?) are £? so

= fo?, X(9)* = x(6*) =2 e,

and the result follows.

Problem 6. Let 7 : G — GL(V) be a finite-dimensional complex representation of the
finite group G. Note that 7 extends to a C-algebra homomorphism C[G] — End(V), also
denoted 7. Let Z be the center of C[G]. Show that there exists a C-algebra homomorphism
wy : 2 — C such that 7(§)v = wr(§)v for £ € Z, called the central character of 7. Let
g € G and let C be the conjugacy class of g. Let C be a conjugacy class of G. Observe that
€ =>,cch € Z. Prove that

(9)IC]
x(1)

>0

wn(€) =

where y is the character of .

Solution. First note that if £ € Z then 7(§)7(g) = 7(g)7(§). By Schur’s Lemma, 7(£) is a
scalar endomorphism of V. Let w, () be its scalar eigenvalue, so

T(§)v = we(§)v.

If £&,m € Z then
wr(§)wn(n) = w(&)m(n)ly = m(&n) Iy = wx(En)

and w, : Z — C is a C-algebra homomorphism.
Applying this to € = >, . h, which is evidently central, let A = w,(€). We have

2 =7(€) = Z m(h)v.

geC

To compute A, we take the trace. Since x(1) = dim(V)

XA =tr(My) = > x(g) = [Clx(9)

geC

snd so A has the advertised value.



