Homework 6 Solutions

The goal of the first problem is to prove the Artin-Rees Lemma, which was stated without
proof in Dimension II and applied to the Krull Dimension Theorem.

Problem 1. Let A be a Noetherian commutative ring, a an ideal, and M a finitely-generated
A-module. Let R = A[x] be the polynomial ring and M|[z] the R-module of polynomials
> muat with m; € M.

R = {ZakxkeRmkEak}, M = {kaxk\mkEakM}
p

k=0
(i) Prove that R’ is a Noetherian ring and M’ a finitely generated R’-module.

(ii) Let N be a submodule of M. Let N' = {>"}_  mya*|my, € N na*M}. Show that N’ is
a finitely generated R’-module, and deduce the Artin-Rees Lemma.

Solution. (i) Since R is Noetherian, a is finitely generated. Let ay,--- ,a, be generators.
Then R’ is the ring generated by a;z, since any element of a” is spanned by elements of the
form a;, - - a;,, so a®z® is spanned by elements (a;,x)--- (a;,x). Since R’ is thus a finitely-
generated algebra over the Noetherian ring A, it is Noetherian by the Hilbert basis theorem.
Similarly M’ is generated by elements a;m;z. As a finitely-generated submodule over a
Noetherian ring, M’ is finitely generated as an R’-module.

(ii) Note that R’N" C N’, so N’ is an R'-submodule of R’. Since R’ is Noetherian, N’ is
finitely generated.

Let us deduce the Artin-Rees Lemma, which asserts that there exists an r such that
a"MNN = a" " (a" MNN) when n > r. The inclusion a” " (a"MNN) C a®MNN is clear. To
prove the other inclusion, let n; 2™, - -, n; x be generators of N’ as an R’-module, and let
r = max(iy,- - ,ix). Now suppose that n > r. We will show that a”MNN = a""(a"MNN).
Indeed, let n € a®M N N. Then nz* € N’ so we may write nz* as a linear combination of
elements &(n;, ') where ¢ € a" "z, Now

E(ng) €a” " (@*MNN)=a""-a *@*MNN)Ca""(a"MNN)
because a” " (a®* M N N) C a"M N N. This proves the Artin-Rees Lemma.

Now let A be a commutative ring and M an A-module. Define a topology on M in which
a subset U C M is open if and only if for every x € U, the set U contains x + a” M for some
n. Thus a sequence x; — 0 if and only if for every n, x; € a for sufficiently large i. This
is called the a—adic topology on M. This leads to the a-adic completion M whose use is a
powerful technique for studying M.



Problem 2. Assume that A is Noetherian, and let M a finitely generated a-module with the
a-adic topology. Let N be a submodule of M. We have two topologies on N: its own a-adic
topology, and its subspace topology as a submodule of M. Show that these two topologies
are the same.

Hint: Use the Artin-Rees Lemma.

Solution. Let U be a subset of N. To be open in the a-adic topology on N, we need to
know that if @ € U then a + a®N C U for some n. On the other hand to be open in the
induced topology we need to know that a + (a™M N N) C U for some m. Clearly

a+(a"MNN)CU = a+a"N CU.
To prove the converse, note that a"™"M NN = a"(a"M N N) C a”N so

a+a"NCU = a+ (@t"MNN)cCU.

Representations

If M is a module for the group algebra C[G] of a finite group, and g € G, we define an
endomorphism 7(g) : M — M by 7(g)v = g - v. This is a representation of G. Conversely,
given a representation 7 : G — GL(M ), where M is a complex vector space, then M admits
the structure of a C[G]-module by

(Z agg> ‘v = Zagw(g)(v), v e M.
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In these notes we will always assume that the module M is finite-dimensional. The character
of M is the character of the corresponding representation. So

x(g) = tr 7(g).
If V is a vector space, a map p : V — V is called a projection if p* = p.
Problem 3. Let G be a finite group, R = C[G] its group algebra. If M is an R-module, let
Y ={re M|gr=nuxforall gcG}

be the module of invariants. Define the endomorphism p : M — M by

IR (1)
geG
Prove that p is a projection map whose image is M and deduce that

dim(MY) = |ZX

geG



Solution. Step 1: the image of p is contained in M¢. Indeed, if g € G then

1 1
g'p(v)zg‘@ZhW:@Z(gh)'v-
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Making the variable change h + g~'h, this becomes

ﬁzgw:p(v)-

heG

We have shown g - p(v) = p(v) so p(v) C MC.

Step 2: if v € M then p(v) = v. Indeed, each term in the sum (1) equals v, so p(v) = v.

Step 3: p* = p. Indeed, if v € M then p(v) € MY by Step 1, so p(p(v)) = p(v) by Step 2.
Therefore p? = p.

Step 4: M = ker(p) @ im(p). (This is true for any projection and was proved in class
on February 16.) Indeed, we have ker(p) Nim(p) = 0 because if x € ker(p) Nim(p), write
x = p(y) because z € im(p), then note that z = p(y) = p*(y) = p(z) = 0 because z € ker(p).
Moreover M = ker(p) +im(p) since any x € M may be written z = (x — p(z)) + p(z) where
x —p(z) € ker(p) and p(x) € im(p). This proves that M = ker(p) @ im(p).

Let d = dim(M%) = im(p) and let n = dim(M). Choose a basis for M such that the
first d basis vectors 1, -+ , x4 are in MY and the remaining basis vectors x4 1,--- ,Z, are
in ker(p). With respect to this basis, the matrix of p is the block diagonal matrix

(o)

so its trace is d = dim(MY). Therefore, in terms of the corresponding representation 7 and
its character y:

dim(MY) = tr(p) = é Ztr 7(g) = |—é,| Z x(9)
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Problem 4. Let M and N be C[G]-modules. Let W = Hom¢ (M, N) be the space of linear
transformations 7' : M — N. Show that T has the structure of a C[G]-module such that

(90)(z)=g-9(¢g°" x), x€M.

Show that the character of W is xa(¢7)xn(g), where xa; and xy are the characters of M
and .

Solution. Choose bases for M and N as vector spaces. Thus if m = dim(M) and n =
dim (V) we identify GL(M) = GL,,(C), GL(N) = GL,(C) and

Homg (M, N) = Mat,;xn(C).

The representations 7y, : G — GL(M) = GL,,(C) and 7y : G — GL(N) = GL,(C)
coming from the C[G]-module structures on M and N are realized in terms of matrices.
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Let E;; be the basis element of Mat,,«,(C) having 1 in the 7, j position and 0 elsewhere.
Now let A = (a;;) € GL,,(C) and B = (b;;) € GL,(C) and consider the linear transfor-
mation ¢ of Mat,,x,(C) such that ®(7') = BT A. It follows from the definition of matrix
multiplication that

O(E;;) = bja;;E;j + linear combination of other Ej,.

So taking the trace picks off the diagonal, and

tr(®) =Y biay; = tr(A) tr(B).

We apply this with A = my;(¢g71) and B = wn(g).

Problem 5. Let F be a field of characteristic p, and let G = (o) a cyclic group of order p
generated by o € G. Let R be the group algebra F[G]. Show that R has elements 7y, --- , 7,
such that

o = Ty,
oT, = T; — Ti—1 (Z > ]_)
Describe all ideals of R and deduce that R is not a semisimple ring.

Solution. Let
n=1+0c+0c*+.. .+,

T=1+20+30*+ -+ (p—1)o??

p—k .
T = (k;gi;l)ﬂ.

J=0

and in general

(]

The last case k = p has only one term j =0 so
T, = L.

It is evident that o = 71. If £ > 1 we have



To compute the coefficient of 07 we have to handle the cases j = 0 and j = p — k + 1
separately. Leaving these aside for the moment assume that 1 < 5 < p — k. Then the

coefficient of o7 is
k4j—1\ (k+j—2Y\ [(k+j-2 3
kE—1 kE—1 o k—2

due to the Pascal triangle identity

a a [ a+1
<b)+(b+1)_<b+1)

If j = 0, there is only a contribution to ¢’ from the first sum in (2) and that coefficient is
k+j—2
k—2
from the second sum in (2), and that contribution is

characteristic p we have
(r=1\ _(p-1
k—1) (k-2

(12 )+ (20) = (2] =0 s

We see that in every case the coefficient of o7 is ( k Zi; 2 ) SO

1, which also agrees with ( ) Finally, if j = p — k + 1 there is a contribution

_(k+p—k+1—2) _ _(p—l

o1 k_l). Now in

since

p—k+1 .
k+7—2
neon= 3 (F1157 ) =ne

j=1
Now we may determine the ideals of F[G]. From the identity om; = 7; — 7,1 it is clear that
]k:FTl@"'@FTk

is closed under the action of GG, hence is an ideal. We claim that these are all the ideals of
F[G]. Define a degree function 0 on the nonzero elements of F'[G] by declaring §(¢) to be
the largest k such that ay # 0 when we write ¢ = > ax7. From the fact that 7, —om, = 731
we have

deg(¢ — 0¢) = deg(¢) — 1 (4)

provided deg(¢) > 1. Let I be an ideal and choose ¢ € I of maximal degree k. From (4) we
see that I has elements of every degree < k. These are linearly independent and span I, so
I =1,.

The ring is not semisimple because [j is not complemented by any ideal J such that
F|G] = I & J. This is clear since we know all the ideals of F[G].



