

Homework 6 Solutions

The goal of the first problem is to prove the Artin-Rees Lemma, which was stated without proof in *Dimension II* and applied to the Krull Dimension Theorem.

Problem 1. Let A be a Noetherian commutative ring, \mathfrak{a} an ideal, and M a finitely-generated A -module. Let $R = A[x]$ be the polynomial ring and $M[x]$ the R -module of polynomials $\sum_i m_i x^i$ with $m_i \in M$.

$$R' = \left\{ \sum_{k=0}^m a_k x^k \in R \mid a_k \in \mathfrak{a}^k \right\}, \quad M' = \left\{ \sum_{k=0}^n m_k x^k \mid m_k \in \mathfrak{a}^k M \right\}$$

- (i) Prove that R' is a Noetherian ring and M' a finitely generated R' -module.
- (ii) Let N be a submodule of M . Let $N' = \left\{ \sum_{k=0}^n m_k x^k \mid m_k \in N \cap \mathfrak{a}^k M \right\}$. Show that N' is a finitely generated R' -module, and deduce the Artin-Rees Lemma.

Solution. (i) Since R is Noetherian, \mathfrak{a} is finitely generated. Let a_1, \dots, a_r be generators. Then R' is the ring generated by $a_i x$, since any element of \mathfrak{a}^n is spanned by elements of the form $a_{i_1} \cdots a_{i_n}$, so $\mathfrak{a}^k x^k$ is spanned by elements $(a_{i_1} x) \cdots (a_{i_n} x)$. Since R' is thus a finitely-generated algebra over the Noetherian ring A , it is Noetherian by the Hilbert basis theorem. Similarly M' is generated by elements $a_i m_i x$. As a finitely-generated submodule over a Noetherian ring, M' is finitely generated as an R' -module.

(ii) Note that $R' N' \subseteq N'$, so N' is an R' -submodule of R' . Since R' is Noetherian, N' is finitely generated.

Let us deduce the Artin-Rees Lemma, which asserts that there exists an r such that $\mathfrak{a}^n M \cap N = \mathfrak{a}^{n-r}(\mathfrak{a}^r M \cap N)$ when $n \geq r$. The inclusion $\mathfrak{a}^{n-r}(\mathfrak{a}^r M \cap N) \subseteq \mathfrak{a}^n M \cap N$ is clear. To prove the other inclusion, let $n_{i_1} x^{i_1}, \dots, n_{i_k} x^{i_k}$ be generators of N' as an R' -module, and let $r = \max(i_1, \dots, i_k)$. Now suppose that $n \geq r$. We will show that $\mathfrak{a}^n M \cap N = \mathfrak{a}^{n-r}(\mathfrak{a}^r M \cap N)$. Indeed, let $\eta \in \mathfrak{a}^n M \cap N$. Then $\eta x^k \in N'$ so we may write ηx^k as a linear combination of elements $\xi(n_{i_k} x^{i_k})$ where $\xi \in \mathfrak{a}^{n-i_k} x^{i_k}$. Now

$$\xi(n_{i_k}) \in \mathfrak{a}^{n-i_k}(\mathfrak{a}^{i_k} M \cap N) = \mathfrak{a}^{n-r} \cdot \mathfrak{a}^{r-i_k}(\mathfrak{a}^{i_k} M \cap N) \subseteq \mathfrak{a}^{n-r}(\mathfrak{a}^r M \cap N)$$

because $\mathfrak{a}^{r-i_k}(\mathfrak{a}^{i_k} M \cap N) \subseteq \mathfrak{a}^r M \cap N$. This proves the Artin-Rees Lemma.

Now let A be a commutative ring and M an A -module. Define a topology on M in which a subset $U \subseteq M$ is open if and only if for every $x \in U$, the set U contains $x + \mathfrak{a}^n M$ for some n . Thus a sequence $x_i \rightarrow 0$ if and only if for every n , $x_i \in \mathfrak{a}$ for sufficiently large i . This is called the \mathfrak{a} -adic topology on M . This leads to the \mathfrak{a} -adic completion \hat{M} whose use is a powerful technique for studying M .

Problem 2. Assume that A is Noetherian, and let M a finitely generated \mathfrak{a} -module with the \mathfrak{a} -adic topology. Let N be a submodule of M . We have two topologies on N : its own \mathfrak{a} -adic topology, and its subspace topology as a submodule of M . Show that these two topologies are the same.

Hint: Use the Artin-Rees Lemma.

Solution. Let U be a subset of N . To be open in the \mathfrak{a} -adic topology on N , we need to know that if $a \in U$ then $a + \mathfrak{a}^n N \subseteq U$ for some n . On the other hand to be open in the induced topology we need to know that $a + (\mathfrak{a}^m M \cap N) \subset U$ for some m . Clearly

$$a + (\mathfrak{a}^m M \cap N) \subset U \quad \Rightarrow \quad a + \mathfrak{a}^n N \subset U.$$

To prove the converse, note that $\mathfrak{a}^{n+r} M \cap N = \mathfrak{a}^n(\mathfrak{a}^r M \cap N) \subseteq \mathfrak{a}^n N$ so

$$a + \mathfrak{a}^n N \subset U \quad \Rightarrow \quad a + (\mathfrak{a}^{n+r} M \cap N) \subset U.$$

Representations

If M is a module for the group algebra $\mathbb{C}[G]$ of a finite group, and $g \in G$, we define an endomorphism $\pi(g) : M \rightarrow M$ by $\pi(g)v = g \cdot v$. This is a representation of G . Conversely, given a representation $\pi : G \rightarrow \text{GL}(M)$, where M is a complex vector space, then M admits the structure of a $\mathbb{C}[G]$ -module by

$$\left(\sum_{g \in G} a_g g \right) \cdot v = \sum a_g \pi(g)(v), \quad v \in M.$$

In these notes we will always assume that the module M is *finite-dimensional*. The *character* of M is the character of the corresponding representation. So

$$\chi(g) = \text{tr } \pi(g).$$

If V is a vector space, a map $p : V \rightarrow V$ is called a *projection* if $p^2 = p$.

Problem 3. Let G be a finite group, $R = \mathbb{C}[G]$ its group algebra. If M is an R -module, let

$$M^G = \{x \in M \mid gx = x \text{ for all } g \in G\}$$

be the module of invariants. Define the endomorphism $p : M \rightarrow M$ by

$$p(v) = \frac{1}{|G|} \sum_{g \in G} g \cdot v. \tag{1}$$

Prove that p is a projection map whose image is M^G and deduce that

$$\dim(M^G) = \frac{1}{|G|} \sum_{g \in G} \chi(g).$$

Solution. Step 1: the image of p is contained in M^G . Indeed, if $g \in G$ then

$$g \cdot p(v) = g \cdot \frac{1}{|G|} \sum_{h \in G} h \cdot v = \frac{1}{|G|} \sum_{h \in G} (gh) \cdot v.$$

Making the variable change $h \mapsto g^{-1}h$, this becomes

$$\frac{1}{|G|} \sum_{h \in G} g \cdot v = p(v).$$

We have shown $g \cdot p(v) = p(v)$ so $p(v) \subseteq M^G$.

Step 2: if $v \in M^G$ then $p(v) = v$. Indeed, each term in the sum (1) equals v , so $p(v) = v$.

Step 3: $p^2 = p$. Indeed, if $v \in M$ then $p(v) \in M^G$ by Step 1, so $p(p(v)) = p(v)$ by Step 2. Therefore $p^2 = p$.

Step 4: $M = \ker(p) \oplus \text{im}(p)$. (This is true for any projection and was proved in class on February 16.) Indeed, we have $\ker(p) \cap \text{im}(p) = 0$ because if $x \in \ker(p) \cap \text{im}(p)$, write $x = p(y)$ because $x \in \text{im}(p)$, then note that $x = p(y) = p^2(y) = p(x) = 0$ because $x \in \ker(p)$. Moreover $M = \ker(p) + \text{im}(p)$ since any $x \in M$ may be written $x = (x - p(x)) + p(x)$ where $x - p(x) \in \ker(p)$ and $p(x) \in \text{im}(p)$. This proves that $M = \ker(p) \oplus \text{im}(p)$.

Let $d = \dim(M^G) = \dim(\text{im}(p))$ and let $n = \dim(M)$. Choose a basis for M such that the first d basis vectors x_1, \dots, x_d are in M^G and the remaining basis vectors x_{d+1}, \dots, x_n are in $\ker(p)$. With respect to this basis, the matrix of p is the block diagonal matrix

$$\begin{pmatrix} I_d & \\ & 0_{n-d} \end{pmatrix}$$

so its trace is $d = \dim(M^G)$. Therefore, in terms of the corresponding representation π and its character χ :

$$\dim(M^G) = \text{tr}(p) = \frac{1}{|G|} \sum_{g \in G} \text{tr } \pi(g) = \frac{1}{|G|} \sum_{g \in G} \chi(g)$$

Problem 4. Let M and N be $\mathbb{C}[G]$ -modules. Let $W = \text{Hom}_{\mathbb{C}}(M, N)$ be the space of linear transformations $T : M \rightarrow N$. Show that W has the structure of a $\mathbb{C}[G]$ -module such that

$$(g\phi)(x) = g \cdot \phi(g^{-1} \cdot x), \quad x \in M.$$

Show that the character of W is $\chi_M(g^{-1})\chi_N(g)$, where χ_M and χ_N are the characters of M and N .

Solution. Choose bases for M and N as vector spaces. Thus if $m = \dim(M)$ and $n = \dim(N)$ we identify $\text{GL}(M) = \text{GL}_m(\mathbb{C})$, $\text{GL}(N) = \text{GL}_n(\mathbb{C})$ and

$$\text{Hom}_{\mathbb{C}}(M, N) = \text{Mat}_{m \times n}(\mathbb{C}).$$

The representations $\pi_M : G \rightarrow \text{GL}(M) = \text{GL}_m(\mathbb{C})$ and $\pi_N : G \rightarrow \text{GL}(N) = \text{GL}_n(\mathbb{C})$ coming from the $\mathbb{C}[G]$ -module structures on M and N are realized in terms of matrices.

Let E_{ij} be the basis element of $\text{Mat}_{m \times n}(\mathbb{C})$ having 1 in the i, j position and 0 elsewhere. Now let $A = (a_{ij}) \in \text{GL}_m(\mathbb{C})$ and $B = (b_{ij}) \in \text{GL}_n(\mathbb{C})$ and consider the linear transformation Φ of $\text{Mat}_{m \times n}(\mathbb{C})$ such that $\Phi(T) = BTA$. It follows from the definition of matrix multiplication that

$$\Phi(E_{ij}) = b_{ii}a_{jj}E_{ij} + \text{linear combination of other } E_{kl}.$$

So taking the trace picks off the diagonal, and

$$\text{tr}(\Phi) = \sum_{i,j} b_{ii}a_{jj} = \text{tr}(A) \text{tr}(B).$$

We apply this with $A = \pi_M(g^{-1})$ and $B = \pi_N(g)$.

Problem 5. Let F be a field of characteristic p , and let $G = \langle \sigma \rangle$ a cyclic group of order p generated by $\sigma \in G$. Let R be the group algebra $F[G]$. Show that R has elements τ_1, \dots, τ_p such that

$$\begin{aligned} \sigma\tau_1 &= \tau_1, \\ \sigma\tau_i &= \tau_i - \tau_{i-1} \quad (i > 1). \end{aligned}$$

Describe all ideals of R and deduce that R is not a semisimple ring.

Solution. Let

$$\begin{aligned} \tau_1 &= 1 + \sigma + \sigma^2 + \dots + \sigma^{p-1}, \\ \tau_2 &= 1 + 2\sigma + 3\sigma^2 + \dots + (p-1)\sigma^{p-2} \end{aligned}$$

and in general

$$\tau_k = \sum_{j=0}^{p-k} \binom{k+j-1}{k-1} \sigma^j.$$

The last case $k = p$ has only one term $j = 0$ so

$$\tau_p = 1.$$

It is evident that $\sigma\tau_1 = \tau_1$. If $k > 1$ we have

$$\begin{aligned} \tau_k - \sigma\tau_k &= \sum_{j=0}^{p-k} \binom{k+j-1}{k-1} \sigma^j - \sum_{j=0}^{p-k} \binom{k+j-1}{k-1} \sigma^{j+1} \\ &= \sum_{j=0}^{p-k} \binom{k+j-1}{k-1} \sigma^j - \sum_{j=1}^{p-k+1} \binom{k+j-2}{k-1} \sigma^j \end{aligned} \tag{2}$$

To compute the coefficient of σ^j we have to handle the cases $j = 0$ and $j = p - k + 1$ separately. Leaving these aside for the moment assume that $1 \leq j \leq p - k$. Then the coefficient of σ^j is

$$\binom{k+j-1}{k-1} - \binom{k+j-2}{k-1} = \binom{k+j-2}{k-2} \quad (3)$$

due to the Pascal triangle identity

$$\binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1},$$

If $j = 0$, there is only a contribution to σ^j from the first sum in (2) and that coefficient is 1, which also agrees with $\binom{k+j-2}{k-2}$. Finally, if $j = p - k + 1$ there is a contribution from the second sum in (2), and that contribution is $-\binom{k+p-k+1-2}{k-1} = -\binom{p-1}{k-1}$. Now in characteristic p we have

$$-\binom{p-1}{k-1} = \binom{p-1}{k-2}$$

since

$$\binom{p-1}{k-2} + \binom{p-1}{k-1} = \binom{p}{k-1} \equiv 0 \pmod{p}.$$

We see that in every case the coefficient of σ^j is $\binom{k+j-2}{k-2}$ so

$$\tau_k - \sigma\tau_k = \sum_{j=1}^{p-k+1} \binom{k+j-2}{k-2} = \tau_{k-1}.$$

Now we may determine the ideals of $F[G]$. From the identity $\sigma\tau_i = \tau_i - \tau_{i-1}$ it is clear that

$$I_k = F\tau_1 \oplus \cdots \oplus F\tau_k$$

is closed under the action of G , hence is an ideal. We claim that these are all the ideals of $F[G]$. Define a degree function δ on the nonzero elements of $F[G]$ by declaring $\delta(\phi)$ to be the largest k such that $a_k \neq 0$ when we write $\phi = \sum a_k \tau_k$. From the fact that $\tau_k - \sigma\tau_k = \tau_{k-1}$ we have

$$\deg(\phi - \sigma\phi) = \deg(\phi) - 1 \quad (4)$$

provided $\deg(\phi) > 1$. Let I be an ideal and choose $\phi \in I$ of maximal degree k . From (4) we see that I has elements of every degree $\leq k$. These are linearly independent and span I_k , so $I = I_k$.

The ring is not semisimple because I_k is not complemented by any ideal J such that $F[G] = I_k \oplus J$. This is clear since we know all the ideals of $F[G]$.