
Homework 6 Solutions

The goal of the first problem is to prove the Artin-Rees Lemma, which was stated without
proof in Dimension II and applied to the Krull Dimension Theorem.

Problem 1. Let A be a Noetherian commutative ring, a an ideal, and M a finitely-generated
A-module. Let R = A[x] be the polynomial ring and M [x] the R-module of polynomials∑

imix
i with mi ∈M .

R′ =

{
m∑
k=0

akx
k ∈ R|ak ∈ ak

}
, M ′ =

{
n∑

k=0

mkx
k|mk ∈ akM

}
(i) Prove that R′ is a Noetherian ring and M ′ a finitely generated R′-module.

(ii) Let N be a submodule of M . Let N ′ =
{∑n

k=0mkx
k|mk ∈ N ∩ akM

}
. Show that N ′ is

a finitely generated R′-module, and deduce the Artin-Rees Lemma.

Solution. (i) Since R is Noetherian, a is finitely generated. Let a1, · · · , ar be generators.
Then R′ is the ring generated by aix, since any element of an is spanned by elements of the
form ai1 · · · ain , so akxk is spanned by elements (ai1x) · · · (ainx). Since R′ is thus a finitely-
generated algebra over the Noetherian ring A, it is Noetherian by the Hilbert basis theorem.
Similarly M ′ is generated by elements aimix. As a finitely-generated submodule over a
Noetherian ring, M ′ is finitely generated as an R′-module.

(ii) Note that R′N ′ ⊆ N ′, so N ′ is an R′-submodule of R′. Since R′ is Noetherian, N ′ is
finitely generated.

Let us deduce the Artin-Rees Lemma, which asserts that there exists an r such that
anM∩N = an−r(arM∩N) when n > r. The inclusion an−r(arM∩N) ⊆ anM∩N is clear. To
prove the other inclusion, let ni1x

i1 , · · · , nikx
ik be generators of N ′ as an R′-module, and let

r = max(i1, · · · , ik). Now suppose that n > r. We will show that anM∩N = an−r(arM∩N).
Indeed, let η ∈ anM ∩ N . Then ηxk ∈ N ′ so we may write ηxk as a linear combination of
elements ξ(nikx

ik) where ξ ∈ an−ikxik . Now

ξ(nik) ∈ an−ik(aikM ∩N) = an−r · ar−ik(aikM ∩N) ⊆ an−r(arM ∩N)

because ar−ik(aikM ∩N) ⊆ arM ∩N . This proves the Artin-Rees Lemma.

Now let A be a commutative ring and M an A-module. Define a topology on M in which
a subset U ⊆M is open if and only if for every x ∈ U , the set U contains x+ anM for some
n. Thus a sequence xi −→ 0 if and only if for every n, xi ∈ a for sufficiently large i. This
is called the a–adic topology on M . This leads to the a-adic completion M̂ whose use is a
powerful technique for studying M .
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Problem 2. Assume that A is Noetherian, and let M a finitely generated a-module with the
a-adic topology. Let N be a submodule of M . We have two topologies on N : its own a-adic
topology, and its subspace topology as a submodule of M . Show that these two topologies
are the same.

Hint: Use the Artin-Rees Lemma.

Solution. Let U be a subset of N . To be open in the a-adic topology on N , we need to
know that if a ∈ U then a + anN ⊆ U for some n. On the other hand to be open in the
induced topology we need to know that a+ (amM ∩N) ⊂ U for some m. Clearly

a+ (anM ∩N) ⊂ U ⇒ a+ anN ⊂ U.

To prove the converse, note that an+rM ∩N = an(arM ∩N) ⊆ anN so

a+ anN ⊂ U ⇒ a+ (an+rM ∩N) ⊂ U.

Representations

If M is a module for the group algebra C[G] of a finite group, and g ∈ G, we define an
endomorphism π(g) : M −→M by π(g)v = g · v. This is a representation of G. Conversely,
given a representation π : G −→ GL(M), where M is a complex vector space, then M admits
the structure of a C[G]-module by(∑

g∈G

agg

)
· v =

∑
agπ(g)(v), v ∈M.

In these notes we will always assume that the module M is finite-dimensional. The character
of M is the character of the corresponding representation. So

χ(g) = tr π(g).

If V is a vector space, a map p : V −→ V is called a projection if p2 = p.

Problem 3. Let G be a finite group, R = C[G] its group algebra. If M is an R-module, let

MG = {x ∈M |gx = x for all g ∈ G}

be the module of invariants. Define the endomorphism p : M −→M by

p(v) =
1

|G|
∑
g∈G

g · v. (1)

Prove that p is a projection map whose image is MG and deduce that

dim(MG) =
1

|G|
∑
g∈G

χ(g).
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Solution. Step 1: the image of p is contained in MG. Indeed, if g ∈ G then

g · p(v) = g · 1

|G|
∑
h∈G

h · v =
1

|G|
∑
h∈G

(gh) · v.

Making the variable change h 7→ g−1h, this becomes

1

|G|
∑
h∈G

g · v = p(v).

We have shown g · p(v) = p(v) so p(v) ⊆MG.
Step 2: if v ∈MG then p(v) = v. Indeed, each term in the sum (1) equals v, so p(v) = v.
Step 3: p2 = p. Indeed, if v ∈M then p(v) ∈MG by Step 1, so p(p(v)) = p(v) by Step 2.

Therefore p2 = p.
Step 4: M = ker(p) ⊕ im(p). (This is true for any projection and was proved in class

on February 16.) Indeed, we have ker(p) ∩ im(p) = 0 because if x ∈ ker(p) ∩ im(p), write
x = p(y) because x ∈ im(p), then note that x = p(y) = p2(y) = p(x) = 0 because x ∈ ker(p).
Moreover M = ker(p) + im(p) since any x ∈M may be written x = (x− p(x)) + p(x) where
x− p(x) ∈ ker(p) and p(x) ∈ im(p). This proves that M = ker(p)⊕ im(p).

Let d = dim(MG) = im(p) and let n = dim(M). Choose a basis for M such that the
first d basis vectors x1, · · · , xd are in MG and the remaining basis vectors xd+1, · · · , xn are
in ker(p). With respect to this basis, the matrix of p is the block diagonal matrix(

Id
0n−d

)
so its trace is d = dim(MG). Therefore, in terms of the corresponding representation π and
its character χ:

dim(MG) = tr(p) =
1

|G|
∑
g∈G

tr π(g) =
1

|G|
∑
g∈G

χ(g)

Problem 4. Let M and N be C[G]-modules. Let W = HomC(M,N) be the space of linear
transformations T : M −→ N . Show that W has the structure of a C[G]-module such that

(gφ)(x) = g · φ(g−1 · x), x ∈M.

Show that the character of W is χM(g−1)χN(g), where χM and χN are the characters of M
and N .

Solution. Choose bases for M and N as vector spaces. Thus if m = dim(M) and n =
dim(N) we identify GL(M) = GLm(C), GL(N) = GLn(C) and

HomC(M,N) = Matm×n(C).

The representations πM : G −→ GL(M) = GLm(C) and πN : G −→ GL(N) = GLn(C)
coming from the C[G]-module structures on M and N are realized in terms of matrices.
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Let Eij be the basis element of Matm×n(C) having 1 in the i, j position and 0 elsewhere.
Now let A = (aij) ∈ GLm(C) and B = (bij) ∈ GLn(C) and consider the linear transfor-
mation Φ of Matm×n(C) such that Φ(T ) = BTA. It follows from the definition of matrix
multiplication that

Φ(Eij) = biiajjEij + linear combination of other Ekl.

So taking the trace picks off the diagonal, and

tr(Φ) =
∑
i,j

biiajj = tr(A) tr(B).

We apply this with A = πM(g−1) and B = πN(g).

Problem 5. Let F be a field of characteristic p, and let G = 〈σ〉 a cyclic group of order p
generated by σ ∈ G. Let R be the group algebra F [G]. Show that R has elements τ1, · · · , τp
such that

στ1 = τ1,

στi = τi − τi−1 (i > 1).

Describe all ideals of R and deduce that R is not a semisimple ring.

Solution. Let
τ1 = 1 + σ + σ2 + . . .+ σp−1,

τ2 = 1 + 2σ + 3σ2 + · · ·+ (p− 1)σp−2

and in general

τk =

p−k∑
j=0

(
k + j − 1
k − 1

)
σj.

The last case k = p has only one term j = 0 so

τp = 1.

It is evident that στ1 = τ1. If k > 1 we have

τk − στk =

p−k∑
j=0

(
k + j − 1
k − 1

)
σj −

p−k∑
j=0

(
k + j − 1
k − 1

)
σj+1

=

p−k∑
j=0

(
k + j − 1
k − 1

)
σj −

p−k+1∑
j=1

(
k + j − 2
k − 1

)
σj (2)
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To compute the coefficient of σj we have to handle the cases j = 0 and j = p − k + 1
separately. Leaving these aside for the moment assume that 1 6 j 6 p − k. Then the
coefficient of σj is (

k + j − 1
k − 1

)
−
(
k + j − 2
k − 1

)
=

(
k + j − 2
k − 2

)
(3)

due to the Pascal triangle identity(
a
b

)
+

(
a

b+ 1

)
=

(
a+ 1
b+ 1

)
,

If j = 0, there is only a contribution to σj from the first sum in (2) and that coefficient is

1, which also agrees with

(
k + j − 2
k − 2

)
. Finally, if j = p − k + 1 there is a contribution

from the second sum in (2), and that contribution is −
(
k+p−k+1−2

k−1

)
= −

(
p−1
k−1

)
. Now in

characteristic p we have

−
(
p− 1

k − 1

)
=

(
p− 1
k − 2

)
since (

p− 1
k − 2

)
+

(
p− 1

k − 1

)
=

(
p

k − 1

)
≡ 0 mod p.

We see that in every case the coefficient of σj is

(
k + j − 2
k − 2

)
so

τk − στk =

p−k+1∑
j=1

(
k + j − 2
k − 2

)
= τk−1.

Now we may determine the ideals of F [G]. From the identity στi = τi − τi−1 it is clear that

Ik = Fτ1 ⊕ · · · ⊕ Fτk

is closed under the action of G, hence is an ideal. We claim that these are all the ideals of
F [G]. Define a degree function δ on the nonzero elements of F [G] by declaring δ(φ) to be
the largest k such that ak 6= 0 when we write φ =

∑
akτk. From the fact that τk−στk = τk−1

we have
deg(φ− σφ) = deg(φ)− 1 (4)

provided deg(φ) > 1. Let I be an ideal and choose φ ∈ I of maximal degree k. From (4) we
see that I has elements of every degree 6 k. These are linearly independent and span Ik, so
I = Ik.

The ring is not semisimple because Ik is not complemented by any ideal J such that
F [G] = Ik ⊕ J . This is clear since we know all the ideals of F [G].
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