

Homework 6

The goal of the first problem is to prove the Artin-Rees Lemma, which was stated without proof in *Dimension II* and applied to the Krull Dimension Theorem.

Problem 1. Let A be a Noetherian commutative ring, \mathfrak{a} an ideal, and M a finitely-generated A -module. Let $R = A[x]$ be the polynomial ring and $M[x]$ the R -module of polynomials $\sum_i m_i x^i$ with $m_i \in M$.

$$R' = \left\{ \sum_{k=0}^m a_k x^k \in R \mid a_k \in \mathfrak{a}^k \right\}, \quad M' = \left\{ \sum_{k=0}^n m_k x^k \mid m_k \in \mathfrak{a}^k M \right\}$$

- (i) Prove that R' is a Noetherian ring and M' a finitely generated R' -module.
- (ii) Let N be a submodule of M . Let $N' = \left\{ \sum_{k=0}^n m_k x^k \mid m_k \in N \cap \mathfrak{a}^k M \right\}$. Show that N' is a finitely generated R' -module, and deduce the Artin-Rees Lemma.

Now let A be a commutative ring and M an A -module. Define a topology on M in which a subset $U \subseteq M$ is open if and only if for every $x \in U$, the set U contains $x + \mathfrak{a}^n M$ for some n . Thus a sequence $x_i \rightarrow 0$ if and only if for every n , $x_i \in \mathfrak{a}$ for sufficiently large i . This is called the \mathfrak{a} -adic topology on M . This leads to the \mathfrak{a} -adic completion \hat{M} whose use is a powerful technique for studying M .

Problem 2. Assume that A is Noetherian, and let M a finitely generated \mathfrak{a} -module with the \mathfrak{a} -adic topology. Let N be a submodule of M . We have two topologies on N : its own \mathfrak{a} -adic topology, and its subspace topology as a submodule of M . Show that these two topologies are the same.

Hint: Use the Artin-Rees Lemma.

Representations

If M is a module for the group algebra $\mathbb{C}[G]$ of a finite group, and $g \in G$, we define an endomorphism $\pi(g) : M \rightarrow M$ by $\pi(g)v = g \cdot v$. This is a representation of G . Conversely, given a representation $\pi : G \rightarrow \text{GL}(M)$, where M is a complex vector space, then M admits the structure of a $\mathbb{C}[G]$ -module by

$$\left(\sum_{g \in G} a_g g \right) \cdot v = \sum a_g \pi(g)(v), \quad v \in M.$$

In these notes we will always assume that the module M is *finite-dimensional*. The *character* of M is the character of the corresponding representation. So

$$\chi(g) = \text{tr } \pi(g).$$

If V is a vector space, a map $p : V \rightarrow V$ is called a *projection* if $p^2 = p$.

Problem 3. Let G be a finite group, $R = \mathbb{C}[G]$ its group algebra. If M is an R -module, let

$$M^G = \{x \in M \mid gx = x \text{ for all } g \in G\}$$

be the module of invariants. Define the endomorphism $p : M \rightarrow M$ by

$$p(v) = \frac{1}{|G|} \sum_{g \in G} g \cdot v. \quad (1)$$

Prove that p is a projection map whose image is M^G and deduce that

$$\dim(M^G) = \frac{1}{|G|} \sum_{g \in G} \chi(g).$$

Problem 4. Let M and N be $\mathbb{C}[G]$ -modules. Let $W = \text{Hom}_{\mathbb{C}}(M, N)$ be the space of linear transformations $T : M \rightarrow N$. Show that W has the structure of a $\mathbb{C}[G]$ -module such that

$$(g\phi)(x) = g \cdot \phi(g^{-1} \cdot x), \quad x \in M.$$

Show that the character of W is $\chi_M(g^{-1})\chi_N(g)$, where χ_M and χ_N are the characters of M and N .

Problem 5. Let F be a field of characteristic p , and let $G = \langle \sigma \rangle$ a cyclic group of order p generated by $\sigma \in G$. Let R be the group algebra $F[G]$. Show that R has elements τ_1, \dots, τ_p such that

$$\begin{aligned} \sigma\tau_1 &= \tau_1, \\ \sigma\tau_i &= \tau_i - \tau_{i-1} \quad (i > 1). \end{aligned}$$

Describe all ideals of R and deduce that R is not a semisimple ring.