Homework 5 Solutions

All rings are commutative with unit.

Recall that an ideal q in a ring A is primary if xy € q implies that either
x € qor y" € q for some n. Equivalently, every zero divisor in A/q is
nilpotent.

Lemma 1. If q is primary then r(q) is prime.

Proof. Suppose that zy € r(q). Then x¥y" € q for some N. Thus either
N € g or (yV)" € q for some n. Thus either x € r(q) or y € r(q). O

If q is primary and r(q) = p then we say that q is p-primary.

Lemma 2. Suppose that q1,qs are p-primary ideals. Then qy N g is also
p-primary.

Proof. We have r(q1 N q2) = 7(q1) N7(q2) = pNp = p. To show q; N gz is
p-primary, suppose that zy € q; N gy but * ¢ q; N qe. Then either x ¢ q;
or x ¢ qo. By symmetry, we may assume that x ¢ q;. Then since zy € q;
which is p-primary, we have y € p = r(q; N q2). O

Theorem 3. If A is Noetherian, then every ideal may be expressed as a finite
intersection of primary ideals.

Proof. We will prove this in class. See Lang’s Algebra, Theorem X.3.3 on
page 423. ]

Write the ideal a as an intersection of primary ideals q;:

d
a= ﬂ q;-
i=1



By Lemma 2 we may assume that the radicals r(q;) are all distinct. Moreover,
we may obviously discard any q; if that does not change the intersection. As-
suming this, the decomposition is called a (reduced) primary decomposition.
The decomposition is not unique but has some uniqueness properties. The
primary decomposition is discussed in Lang’s Algebra Chapter 10, but see
the book of Atiyah and Macdonald, Chapter 4, for more information. Atiyah
and Macdonald is available on-line through the Stanford Libraries.

The notion of a primary ideal is needed in the dimension theory.

The following well-known fact may be useful in doing Problem 1. The set
N of nilpotent elements of a ring A is called the nilradical. 1t is an ideal, the
radical of (0).

Proposition 4. The nilradical is the intersection of all prime ideals of A.

Proof. See Lang’s Algebra, Corollary X.2.2 on page 417. O]

Problem 1. Show that if r(a) is maximal, then A/a is a local ring with a
single prime ideal. The ideal a is primary.

Solution: Let m = r(a). Let A = A/a and let m be the image of m. An
element T € A is nilpotent if and only if 2V € a for some a, that is, if and
only if # € m. Thus m is the nilradical of A. Since m is maximal, and the
nilradical is the intersection of all prime ideals of A, it follows that m is the
unique prime ideal of A. In particular it is the unique maximal ideal so A is
local. Any zero divisor is an element of m, hence is nilpotent, proving that a
is primary.

One might hope from Problem 1 that if r(a) is only assumed to be prime
that a might be primary. However the next problem shows that this is not
true.

Problem 2. Let A be the quotient of the polynomial ring C[X,Y, Z] by the
ideal (X2 — Y Z) and let z,y, z be the images of X, Y, Z in A. Let p be the
ideal (z,z). Show that p is prime and that the radical of p? is p, but that p?
is not primary.

Solution. To show that p is prime note that it is the image of the ideal
(X,Z) of C[X,Y, Z] in A. Since (X, Z) is prime, p is prime. Let us show that
r(p?) = p. Since both generators z and z of p are in p? we have p C r(p?). On
the other hand p? C p so 7(p?) C r(p) = p since p is prime. Thus r(p?) = p.
We have yz = 22 € p2, but 2z € p? and yV ¢ p? for any N. Hence p? is not
primary.



Problem 3. Let A be the polynomial ring k[x,y, z], where k is a field. Let
p1 = (z,v), po = (x,2) and m = (z,y, 2). Let a = pyp,. Prove that

a =7 ﬂpgﬂmZ

is a primary decomposition.

Solution. The ideals p; and py are primary since they are prime. The
ideal m? is primary by Problem 1 since its radical m is a maximal ideal. It
remains to be shown that the stated decomposition is true. It is obvious that
a C p1, P, m?soa C prMNpaN m?2. To prove the converse inequality, suppose
that f € p; NpaNm?. Let m = 2%9°2¢ be a monomial that appears in f. We
will argue that m is divisible by one of 2%, 2y, xz or yz. Since z%y’z¢ € m?
we have a +b+c > 2. If a = 0 then m is divisible by one of 2%, xy or zz. On
the other hand, if @ = 0 then since f € p; we have b > 0 and since f € po
we have ¢ > 0 so m is divisible by yz. We have proved our assertion. Since
p1ps is generated by 22, xy, 2 and yz, we have shown that p; Np, Nm? C a.

The next problem is a strengthening from a fact from last week.

Problem 4. Let o be a Dedekind domain with a unique maximal ideal p.
Prove that R is a discrete valuation ring.

Solution. In our earlier exercises we showed that every nonzero ideal of R
has been proved to be a product of maximal ideals, so every ideal is of the
form p* for some k. Moreover the fractional ideal p~! in the field of fractions
is not equal to 0. Let ™! be some element of p~! —o. Thenw € p. If y €0
then (y) = p” for some n. Then (w "y) = 0 so y = w"e where ¢ is a unit.
This shows that every ideal is principal, generated by a power of w, and it
follows that o is a DVR.

Problem 5. Let A be the quotient of the polynomial ring k[X, Y] by the
polynomial Y2 — X3 and let z,y be the images of X and Y in A. Prove that
A is not integrally closed. If m is the maximal ideal generated by z and y,
determine the dimension of m”/m"*! for all n > 1.

Solution. The element ¢ = y/x in the field of fractions satisfies the equation
t2 = x, so it is integral over A, but it is not in A. The ideal m™ with
n > 0 is generated by x%® with a +b = n. Using the relation 3?> = 23, we
may dispense with all the generators except two, 2 and yxz™ !. These two

elements are also a basis of m"/m"*! which is therefore two-dimensional.



Problem 6. Let A be a function defined on modules over a ring taking
values in Z U {oo} such that if 0 — M’ — M — M"” — 0 is a short

exact sequence then
AM) = A(M') + MM").

Prove that if 0 — M} — My — M3 — M, — 0 is exact then
A(My) — M(My) + AM(M3) — A\(My) = 0.

Solution. Let M’ be the cokernel of the map M; — M,. Then we have
short exact sequences

0 — My, — My — M' — 0, 0— M — Ms — My — 0,

S0 A(My) = A(Ma)+A(M') = 0 and A(M") — N(M3) + A(My) = 0. Subtracting
these identities gives the required result.



