

Homework 5

All rings are commutative with unit.

Recall that an ideal \mathfrak{q} in a ring A is *primary* if $xy \in \mathfrak{q}$ implies that either $x \in \mathfrak{q}$ or $y^n \in \mathfrak{q}$ for some n . Equivalently, every zero divisor in A/\mathfrak{q} is nilpotent.

Lemma 1. *If \mathfrak{q} is primary then $r(\mathfrak{q})$ is prime.*

Proof. Suppose that $xy \in r(\mathfrak{q})$. Then $x^N y^N \in \mathfrak{q}$ for some N . Thus either $x^N \in \mathfrak{q}$ or $(y^N)^n \in \mathfrak{q}$ for some n . Thus either $x \in r(\mathfrak{q})$ or $y \in r(\mathfrak{q})$. \square

If \mathfrak{q} is primary and $r(\mathfrak{q}) = \mathfrak{p}$ then we say that \mathfrak{q} is \mathfrak{p} -primary.

Lemma 2. *Suppose that $\mathfrak{q}_1, \mathfrak{q}_2$ are \mathfrak{p} -primary ideals. Then $\mathfrak{q}_1 \cap \mathfrak{q}_2$ is also \mathfrak{p} -primary.*

Proof. We have $r(\mathfrak{q}_1 \cap \mathfrak{q}_2) = r(\mathfrak{q}_1) \cap r(\mathfrak{q}_2) = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p}$. To show $\mathfrak{q}_1 \cap \mathfrak{q}_2$ is \mathfrak{p} -primary, suppose that $xy \in \mathfrak{q}_1 \cap \mathfrak{q}_2$ but $x \notin \mathfrak{q}_1 \cap \mathfrak{q}_2$. Then either $x \notin \mathfrak{q}_1$ or $x \notin \mathfrak{q}_2$. By symmetry, we may assume that $x \notin \mathfrak{q}_1$. Then since $xy \in \mathfrak{q}_1$ which is \mathfrak{p} -primary, we have $y \in \mathfrak{p} = r(\mathfrak{q}_1 \cap \mathfrak{q}_2)$. \square

Theorem 3. *If A is Noetherian, then every ideal may be expressed as a finite intersection of primary ideals.*

Proof. We will prove this in class. See Lang's *Algebra*, Theorem X.3.3 on page 423. \square

Write the ideal \mathfrak{a} as an intersection of primary ideals \mathfrak{q}_i :

$$\mathfrak{a} = \bigcap_{i=1}^d \mathfrak{q}_i.$$

By Lemma 2 we may assume that the radicals $r(\mathfrak{q}_i)$ are all distinct. Moreover, we may obviously discard any \mathfrak{q}_i if that does not change the intersection. Assuming this, the decomposition is called a (reduced) *primary decomposition*. The decomposition is not unique but has some uniqueness properties. The primary decomposition is discussed in Lang's *Algebra* Chapter 10, but see the book of Atiyah and Macdonald, Chapter 4, for more information. Atiyah and Macdonald is available on-line through the Stanford Libraries.

The notion of a primary ideal is needed in the dimension theory.

The following well-known fact may be useful in doing Problem 1. The set \mathfrak{N} of nilpotent elements of a ring A is called the *nilradical*. It is an ideal, the radical of (0) .

Proposition 4. *The nilradical is the intersection of all prime ideals of A .*

Proof. See Lang's *Algebra*, Corollary X.2.2 on page 417. \square

Problem 1. Show that if $r(\mathfrak{a})$ is maximal, then A/\mathfrak{a} is a local ring with a single prime ideal. The ideal \mathfrak{a} is primary.

One might hope from Problem 1 that if $r(\mathfrak{a})$ is only assumed to be prime that \mathfrak{a} might be primary. However the next problem shows that this is not true.

Problem 2. Let A be the quotient of the polynomial ring $\mathbb{C}[X, Y, Z]$ by the ideal $(X^2 - YZ)$ and let x, y, z be the images of X, Y, Z in A . Let \mathfrak{p} be the ideal (x, z) . Show that \mathfrak{p} is prime and that the radical of \mathfrak{p}^2 is \mathfrak{p} , but that \mathfrak{p}^2 is not primary.

Problem 3. Let A be the polynomial ring $k[x, y, z]$, where k is a field. Let $\mathfrak{p}_1 = (x, y)$, $\mathfrak{p}_2 = (x, z)$ and $\mathfrak{m} = (x, y, z)$. Let $\mathfrak{a} = \mathfrak{p}_1\mathfrak{p}_2$. Prove that

$$\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$$

is a primary decomposition.

The next problem is a strengthening from a fact from last week.

Problem 4. Let \mathfrak{o} be a Dedekind domain with a unique maximal ideal \mathfrak{p} . Prove that R is a discrete valuation ring.

Problem 5. Let A be the quotient of the polynomial ring $k[X, Y]$ by the polynomial $Y^2 - X^3$ and let x, y be the images of X and Y in A . Prove that A is not integrally closed. If \mathfrak{m} is the maximal ideal generated by x and y , determine the dimension of $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ for all $n \geq 1$.

Problem 6. Let λ be a function defined on modules over a ring taking values in $\mathbb{Z} \cup \{\infty\}$ such that if $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is a short exact sequence then

$$\lambda(M) = \lambda(M') + \lambda(M'').$$

Prove that if $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow 0$ is exact then

$$\lambda(M_1) - \lambda(M_2) + \lambda(M_3) - \lambda(M_4) = 0.$$