
Math 210B: Homework 4 Solutions

All rings are commutative, with 1. Some of the problems make use of the
norm map, so review Theorem VI.5.1 of Lang’s Algebra.

We will say a ring is of dimension 1 if it is not a field and every nonzero
prime ideal is maximal. Recall that a Dedekind domain is an integral domain
that is integrally closed (meaning integrally closed in its field of fractions),
Noetherian, and of dimension 1.

Problem 1. Let E/F be a finite separable field extension and let N : E× →
F× be the norm map. Let A be a subring of F that is integrally closed (in F )
and let B be the integral closure of A in E. Let x ∈ B. Show that N(x) ∈ A.
Moreover show that x ∈ B× if and only if N(x) ∈ A×.

Solution. Let σi : E → F be the distinct embeddings of E into the algebraic
closure over F . If x ∈ B then N(x) =

∏
i σi(x), where each σi(x) is integral

over A. Thus N(x) ∈ F and N(x) is integral over A. Since A is integrally
closed, N(x) ∈ A.

If x is a unit in B, write 1 = xy for y ∈ B. Then 1 = N(1) = N(x)N(y)
so N(x) is a unit.

Conversely, suppose that N(x) is a unit. Order the embeddings σi so that
σ1 is the identity and consider y =

∏
i 6=1 σi(x). This is integral over A since

each σi(x) is. Moreover y = N(x)/x ∈ E since x,N(x) ∈ E. Since B is the
integral closure of A in E, y ∈ B. Now N(x) = xy is a unit by assumption
and y ∈ B, so x must be a unit.

Problem 2. Let E/F be a finite separable field extension and let A be a
Dedekind domain whose field of fractions is F . Let B be the integral closure
of A in E. Prove that B is a Dedekind domain.

Solution. Clearly B is integrally closed, and it is Noetherian by Problem 5
of Homework 3.

1



We show that B is of dimension 1. Let P be a maximal ideal of B. We
will argue that P ∩A is nonzero. Let σ1, · · · , σr be the distinct embeddings
over F of E into the algebraic closure F of F . We order them so that σ1
is the identity map. Let x be a nonzero element of P. We will show that
N(x) =

∏
σi(x) is a nonzero element of P ∩ A. Indeed, N(x) is a nonzero

element of F by Theorem VI.5.1 on page 285 of Lang. It is integral over A
since the σi(x) satisfy the same monic polynomial in A[x] as x. Since A is
integrally closed, N(x) ∈ A. We will show that it is in P. First note that
N(x)/x ∈ E since N(x) ∈ F and x ∈ E. Since N(x)/x =

∏
i 6= 1σi(x) it is

integral over A and hence N(x)/x ∈ B. Therefore N(x) = x · (N(x)/x) ∈ P.
We have shown that N(x) ∈ P ∩ A, so this is a nonzero ideal of A. It is
prime since P is prime. Since A is a Dedekind domain, P ∩ A is maximal.
Then P is maximal by Lang, Proposition VII.1.11 on page 339. This proves
that B is of dimension 1.

Problem 3. Show that a principal ideal domain is a Dedekind domain.
Show that Z[

√
−5] is Dedekind domain that is not a PID.

Solution. Z[
√
−5] is the integral closure of Z in Q(

√
−5) by Problem 4 of

Homework 1, so it is a Dedekind domain by the last problem. To show that
it is not a principal ideal domain, let

a = {a+ b
√
−5|a, b ∈ Z, a ≡ b mod 2}.

It is easy to see that a is an ideal. We argue that a is not principal. If
a = (α), then 2 and 1 +

√
−5 are both multiples of α. Thus 4 = N(2)

and 6 = N(1 +
√
−5) are both multiples of N(α) ∈ Z. This implies that

N(α) = ±1, which implies that α = ±1, a contradiction since a 6= (1).

Let o be a Dedekind domain and let K be its field of fractions. Let a be
a nonzero o-submodule of K. If there exists c ∈ o such that ca ⊂ o, then a
is called a fractional ideal. Thus a nonzero ideal of o is a fractional ideal.

The next exercise continues (from Homework 3) Exercise VII.7 in Lang’s
Algebra.
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Problem 4. Let o be a Dedekind domain and let K be its field of fractions.
Let p be a maximal ideal of K. Define

p−1 = {x ∈ K|xp ⊆ o}.

(a) Show that p−1 is a fractional ideal containing o and that p−1 6= o.

(b) Continuing from the preceding problem, show that p−1p = o.

(c) Prove that every non-zero ideal is invertible by a fractional ideal. Deduce
that the fractional ideals of o form a group under multiplication.

Hints: For (a) try to use Problem 6 from Homework 3. If 0 6= x ∈ p show
that you can find primes pi such that p1 · · · pr ⊆ xo ⊆ p. Show that one
of the pi = p. Then what? For (b), use the assumption that o is integrally
closed to rule out the possibility that p−1p = p.

Solution. For (a), let us show that p−1 is a fractional ideal. Indeed, pick a
nonzero element c of p and note that cp−1 ⊆ o by definition of p−1. The hard
part will be to show that p−1 is strictly larger than o. Let x ∈ p and using
(a) find maximal ideals p1, · · · , pr such that (x) ⊇ p1 · · · pr. Take r minimal
for this. We claim p must be one of the pi. If not, then pi 6= p so we can find
xi ∈ pi\p. Then ∏

xi ∈
∏

pi ⊆ (x) ⊆ p

but xi /∈ p, which is a contradiction because p is prime. Reordering the pi
we may assume that p1 = p. Now

p ⊇ (x) ⊇ pp2 · · · pr

and by the minimality of r we have (x) + p2 · · · pr. Now the map a 7→ xa
takes fractional ideals to fractional ideals and since it has an inverse a 7→ x−1a
it is a bijection of the fractional ideals. Thus

o ⊇ p · x−1p2 · · · pr, o + x−1p2 · · · pr.

This means that we can find an element y ∈ x−1p2 · · · pr such that y /∈ o.
Then y ∈ p−1 proving that p−1 6= o.

(b) From the definition of p−1 it is clear that pp−1 ⊆ o and since o ⊆ p−1

we have
o ⊇ pp−1 ⊇ p.

Thus either pp−1 = o or pp−1 = p. We must rule out the second case. Let
x ∈ p−1\o. Suppose that xp ⊆ p. Then p is a faithful o[x]-module that is
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finitely generated as an o-module because o is Noetherian. Therefore by the
integrality criterion x is integral over o. But o is integrally closed in K, so
x ∈ o which is a contradiction.

(c) Suppose that there is a fractional ideal a such that ab = o does not
have a solution b that is a fractional ideal. Since o is Noetherian, let a be
a maximal such counterexample. Let p be a maximal ideal containing in a.
Then

a = oa ⊆ p−1a ⊆ p−1p = o

so p−1a is an ideal containing a. We will show that p−1a is strictly larger
than a. If not, p−1a = a and by the integrality criterion, this means every
element of p−1 is integral over o, which we know is not true. By maximality
of the counterexample a we have cp−1a = o for some fractional ideal c and
so ab = o with b = cp−1.

Now it is clear that fractional ideals form a multiplicative monoid, and
(d) shows that elements are invertible, so fractional ideals form a group.

Problem 5. Let R be a principal ideal domain with a unique nonzero prime
ideal. Prove that R is a valuation ring of its field of fractions F .

We will call a principal ideal domain with a unique nonzero prime ideal
a discrete valuation ring (DVR).

Solution. Let p be the unique maximal ideal. It is principal, so write
p = $R. If a ∈ F write a = b/c with b, c ∈ R. Since a PID is a UFD we
may write b = $nβ and c = $mγ with β, γ units. Then a = $n−mα where
α = β/γ ∈ R×. If n > m then a ∈ R, while if n 6 m, then 1/a ∈ R. This
proves that R is a valuation ring.
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