Math 210B: Homework 4 Solutions

All rings are commutative, with 1. Some of the problems make use of the
norm map, so review Theorem VI.5.1 of Lang’s Algebra.

We will say a ring is of dimension 1 if it is not a field and every nonzero
prime ideal is maximal. Recall that a Dedekind domain is an integral domain
that is integrally closed (meaning integrally closed in its field of fractions),
Noetherian, and of dimension 1.

Problem 1. Let E/F be a finite separable field extension and let N : E* —
F* be the norm map. Let A be a subring of F’ that is integrally closed (in F’)
and let B be the integral closure of A in FE. Let z € B. Show that N(z) € A.
Moreover show that x € B* if and only if N(z) € A*.

Solution. Let 0; : E — F be the distinct embeddings of E into the algebraic
closure over F. If x € B then N(x) =[], 0;(z), where each o;(z) is integral
over A. Thus N(z) € F' and N(x) is integral over A. Since A is integrally
closed, N(z) € A.

If z is a unit in B, write 1 = xy for y € B. Then 1 = N(1) = N(z)N(y)
so N(x) is a unit.

Conversely, suppose that N(z) is a unit. Order the embeddings o; so that
oy is the identity and consider y = [],, o;(z). This is integral over A since
each o;(x) is. Moreover y = N(z)/z € E since z, N(z) € E. Since B is the
integral closure of A in F, y € B. Now N(z) = xy is a unit by assumption
and y € B, so x must be a unit.

Problem 2. Let E/F be a finite separable field extension and let A be a
Dedekind domain whose field of fractions is F'. Let B be the integral closure
of Ain E. Prove that B is a Dedekind domain.

Solution. Clearly B is integrally closed, and it is Noetherian by Problem 5
of Homework 3.



We show that B is of dimension 1. Let 3 be a maximal ideal of B. We
will argue that 8 N A is nonzero. Let oy, - - , 0, be the distinct embeddings
over F of E into the algebraic closure F' of F. We order them so that oy
is the identity map. Let x be a nonzero element of . We will show that
N(z) = [[oi(z) is a nonzero element of P N A. Indeed, N(x) is a nonzero
element of F' by Theorem VI.5.1 on page 285 of Lang. It is integral over A
since the o;(z) satisfy the same monic polynomial in A[z] as z. Since A is
integrally closed, N(z) € A. We will show that it is in 8. First note that
N(z)/z € E since N(z) € F and z € E. Since N(z)/z = []i # lo;(x) it is
integral over A and hence N(z)/x € B. Therefore N(z) = z- (N(z)/z) € P.
We have shown that N(z) € P N A, so this is a nonzero ideal of A. It is
prime since P is prime. Since A is a Dedekind domain, B N A is maximal.
Then *B is maximal by Lang, Proposition VII.1.11 on page 339. This proves
that B is of dimension 1.

Problem 3. Show that a principal ideal domain is a Dedekind domain.
Show that Z[v/—5] is Dedekind domain that is not a PID.

Solution. Z[v/—5] is the integral closure of Z in Q(1/—5) by Problem 4 of
Homework 1, so it is a Dedekind domain by the last problem. To show that
it is not a principal ideal domain, let

a={a+bv=5|a,b € Z,a =bmod 2}.

It is easy to see that a is an ideal. We argue that a is not principal. If
a = (a), then 2 and 1 + /=5 are both multiples of a. Thus 4 = N(2)
and 6 = N(1 4 /=5) are both multiples of N(a) € Z. This implies that
N(a) = £1, which implies that o = %1, a contradiction since a # (1).

Let 0 be a Dedekind domain and let K be its field of fractions. Let a be
a nonzero o-submodule of K. If there exists ¢ € o such that ca C o, then a
is called a fractional ideal. Thus a nonzero ideal of o is a fractional ideal.

The next exercise continues (from Homework 3) Exercise VIL.7 in Lang’s
Algebra.



Problem 4. Let 0 be a Dedekind domain and let K be its field of fractions.
Let p be a maximal ideal of K. Define

p ' ={r € Klrp C o}

(a) Show that p~! is a fractional ideal containing o and that p=! # o.
(b) Continuing from the preceding problem, show that p~'p = o.

(c) Prove that every non-zero ideal is invertible by a fractional ideal. Deduce
that the fractional ideals of o form a group under multiplication.

Hints: For (a) try to use Problem 6 from Homework 3. If 0 # x € p show
that you can find primes p; such that p;---p, € zo C p. Show that one
of the p; = p. Then what? For (b), use the assumption that o is integrally
closed to rule out the possibility that p~tp = p.

Solution. For (a), let us show that p~! is a fractional ideal. Indeed, pick a
nonzero element ¢ of p and note that cp~! C o by definition of p~!. The hard
part will be to show that p~! is strictly larger than o. Let x € p and using
(a) find maximal ideals py, - -+, p, such that (z) D py---p,. Take r minimal
for this. We claim p must be one of the p;. If not, then p; # p so we can find

x; € Pz\P Then
Hmz‘ € sz‘ C(z)Cyp

but x; ¢ p, which is a contradiction because p is prime. Reordering the p;
we may assume that p; = p. Now

p2(x) Dppy---pr

and by the minimality of 7 we have (z) 2 ps---p,. Now the map a — za
takes fractional ideals to fractional ideals and since it has an inverse a — 2z~ 'a

it is a bijection of the fractional ideals. Thus

oDp-x 'parop, 0D paop,.

This means that we can find an element y € x 'py---p, such that y ¢ o.
Then y € p~! proving that p=! # o.
(b) From the definition of p~! it is clear that pp~* C o and since o C p~*
we have
0o2pp ' 2p.

Thus either pp~! = 0 or pp~! = p. We must rule out the second case. Let
z € p~'\o. Suppose that zp C p. Then p is a faithful o[z]-module that is
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finitely generated as an o-module because o is Noetherian. Therefore by the
integrality criterion x is integral over 0. But o is integrally closed in K, so
x € o which is a contradiction.

(c) Suppose that there is a fractional ideal a such that ab = o does not
have a solution b that is a fractional ideal. Since o is Noetherian, let a be
a maximal such counterexample. Let p be a maximal ideal containing in a.
Then

a=o0aCplaCplp=o

so p~la is an ideal containing a. We will show that p~'a is strictly larger
than a. If not, p~'a = a and by the integrality criterion, this means every
element of p~! is integral over o, which we know is not true. By maximality
of the counterexample a we have cp~ta = o for some fractional ideal ¢ and
so ab = o with b = cp~ 1.

Now it is clear that fractional ideals form a multiplicative monoid, and
(d) shows that elements are invertible, so fractional ideals form a group.

Problem 5. Let R be a principal ideal domain with a unique nonzero prime
ideal. Prove that R is a valuation ring of its field of fractions F'.

We will call a principal ideal domain with a unique nonzero prime ideal
a discrete valuation ring (DVR).

Solution. Let p be the unique maximal ideal. It is principal, so write
p=wR. If a € F write a = b/c with b,c € R. Since a PID is a UFD we
may write b = w" and ¢ = w™y with §,~ units. Then a = @w" "« where
a= (/v € R*. If n > m then a € R, while if n < m, then 1/a € R. This
proves that R is a valuation ring.



