
Math 210B: Homework 3 Solutions

Recall that if a is an ideal of A the radical of a is

r(a) = {f ∈ A|fn ∈ a for some n > 0} .

This is an ideal containing a, and it is easy to see that r(r(a)) = r(a). The
ideal a is called radical if a = r(a).

Let k be a field, which we assume to be algebraically closed. Let An(k) be
affine n-space kn. If S is a subset of the polynomial ring k[X] = k[X1, · · · , Xn]
then

V (S) = {a = (a1, · · · , an) ∈ An(k)|f(a) = 0 for all f ∈ S} .

If a is the ideal generated by S and r(a) is the radical of a then V (S) =
V (a) = V (r(a)). Also if X is a subset of An(k) let

I(X) = {f ∈ k[X]|f(a) = 0 for all a ∈ a} .

It is an ideal. By the Nullstellensatz I(V (a)) = r(a).
The sets V (S) are called algebraic sets and last week you proved they

form the closed sets in a topology, called the Zariski topology on An(k). The
essential content of the Nullstellensatz is that a 7→ V (a) is a bijection between
radical ideals and Zariski closed sets.

A closed (i.e. algebraic) subset X of An(k) is called reducible if there exist
proper closed subsets Y, Z of X such that X = Y ∪ Z. If it is not reducible
it is called irreducible. I will call an irreducible closed set a variety though
this terminology is not universally adopted: often a variety is not required
to be irreducible.

Problem 1. Prove that V (a) is irreducible if and only if r(a) is prime.
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Solution. Suppose that a and b are radical ideals. Then it is clear from the
defintions that if a ⊆ b then V (a) ⊇ V (b). We also note that if V (a) = V (b)
then a = b. This is because by the Nullstellensatz I(V (a)) = r(a) = a and
similarly I(V (b)) = b.

Suppose X is reducible, so X = Y ∪ Z with Y, Z proper subsets of X.
Let b = I(Y ) and c = I(Z). By the above discussion a is a strictly proper
subideal of b and similarly of c. So let f ∈ b\a and g ∈ c\a. Then f vanishes
on Y while g vanishes on Z so fg vanishes on X, that is fg ∈ a. This shows
that a is not a prime ideal.

Conversely if a is not prime let f, g /∈ a such that fg ∈ a. Then consider
b = a + (f) and c = a + (g). Then Y = V (b) and Z = V (c) are strictly
smaller Zariski closed subsets of X. But bc ⊆ a so X ⊆ Y ∪ Z. The other
inclusion is also clear so X = Y ∪ Z and thus X is reducible.

Problem 2. (a) Let A ⊂ F where F is a field, and let B be the integral
closure of A in F . Let S ⊆ A be a multiplicative set. Show that S−1B is the
integral closure of S−1A in F .

(b) Let A be an integral domain. We recall that we say A is integrally
closed if it is integrally closed in its field of fractions F . Show that A is
integrally closed if and only if Am is integrally closed for every maximal ideal
m of A.

Hint for (b): Let C be the integral closure of A in F . Let x ∈ C. Suppose
that x /∈ A. Let a = {f ∈ A|fx ∈ A}. Let m be a maximal ideal of A
containing a. Then ...

Solution. (a) Since S−1B is generated by S−1A and B it is integral over
S−1A. Conversely, suppose that x ∈ F is integral over S−1A. This means
that we have a relation

xn +
an−1
sn−1

xn−1 + · · ·+ a0
s0

= 0.

Let t = s0 · · · sn−1. Then

(tx)n +

(
an−1t

sn−1

)
(tx)n−1 + · · ·+ a0t

n

s0
= 0.

The coefficients here are in A, so tx is integral over A, that is, tx ∈ B. Thus
x ∈ S−1B. We have shown that S−1B consists of precisely the elements of
F that are integral over A.
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(b) It follows from (a) that if A is integrally closed then so is Am. For
the converse, assume that Am is integrally closed for all maximal ideals m.
Let C be the integral closure of A in F ; we want to show that C = A. If
not, let x ∈ C\A. Let a = {f ∈ A|fx ∈ A}. Then this is a proper ideal
of A. Let m be a maximal ideal containing a. Then x is integral over A,
a fortiori over Am. Since Am is integrally closed, x ∈ Am and we may thus
write x = y/s where y ∈ A and s ∈ A−m. But then sx ∈ A, so s ∈ a. This
is a contradiction since s /∈ m.

We recall the Extension Theorem for valuations that was proved in Week
2. If F is a field, a valuation ring of F is a subring R such that if x ∈ F then
either x ∈ R or x−1 ∈ R. A valuation ring is R a local ring. Its maximal
ideal p may be characterized as {x ∈ R|x−1 /∈ R} since in a local ring, the
nonunits comprise the unique maximal ideal.

Theorem 1. Let F be a field and A a subring of F . Let φ : A −→ Ω be
a homomorphism of A into an algebraically closed field Ω. Then φ may be
extended to a homomorphism Φ : R −→ Ω where R is a valuation ring of F .

This is Corollary 3.3 in Section VII.3 of Lang’s Algebra. It was also proved
in class and used to prove the Nullstellensatz. Use it in the next Exercise.

Problem 3. Let F be a field and A a subring of F . Show that the integral
closure of A in F is the intersection of all valuation rings of F containing A.

Hint: To prove that if x ∈ F is not integral over A then there is a valuation
ring R of F such that x /∈ R, show that x−1A[x−1] is contained in a maximal
ideal of A[x−1], then find a way to use the Extension Theorem.

Solution. First suppose that x ∈ A is integral over A; we show that x is in
every valuation ring R of F containing A. Indeed, write

xn + an−1x+ . . .+ a0, ai ∈ A.

If x /∈ R then x−1 is in the maximal ideal p of R so 1 = −an−1x−1−. . .−x−n ∈
p which is a contradiction.

For the other direction (using the Hint) assume that x is not integral
over A. We claim that x−1 generates a proper ideal of A[x−1]. Indeed, if
1 ∈ x−1A[x−1] then we may write

1 = a1x
−1 + . . .+ amx

−m
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for some ai ∈ A and then xm − a1x
m−1 − . . . − am = 0 contradicting our

assumption that x is not integral.
Now let p be a maximal ideal of A[x−1] containing x−1A[x−1]. Let Ω

be the algebraic closure of A[x−1]/p. We have a homomorphism of ϕ :
x−1A[x−1] −→ Ω such that x−1 7→ 0. By the Extension Theorem we may
extend this map to a valuation ring R. Since x−1 maps to 0, x is not in R.

Problem 4. Let F be a field and let R be the polynomial ring F [X, Y ] in
two variables. Give examples of prime ideals p and q such that the local ring
Rp is a valuation ring but the local ring Rq is not.

Solution. Let p = (X), the principal ideal generated by X. We may write
any element f of F as Xkφ/ψ where k ∈ Z and φ, ψ are polynomials not
divisible by X. Then f ∈ Rp if and only if k > 0. From this description it is
clear that either f ∈ Rp or f−1 ∈ Rp, so Rp is a valuation ring.

On the other hand let q be the maximal ideal generated by X and Y .
Then neither X/Y nor Y/X is in Rq, so it is not a valuation ring.

Problem 5. Let A be an integrally closed integral domain. This means
that it is integrally closed in its field of fractions K. Let L/K be a finite
separable extension and let B be the integral closure of A in L. Suppose that
A is Noetherian. Prove that B is a finitely-generated A-module and deduce
that B is also Noetherian.

Hint: This is Problem 3 in the exercises to Chapter VII of Lang (page 353).
See Lang for the hint.

Solution: Let ω1, · · · , ωn be a basis of L over K. Using Proposition VII.1.1
we may multiply ωi be a constant ci such that it is integral over A. Therefore
without loss of generality we may assume ωi ∈ A.

Now we make use of the trace bilinear form β(x, y) = tr(xy) on L which
is nondegenerate since E/F is separable; see Theorem VI.5.2 and its Corol-
lary 5.3 on page 286 of Lang. Let ω′i be the dual basis of L so tr(ωiω

′
j) = δij.

We claim that B ⊆ Aω′1 ⊕ · · · ⊕ Aω′n. Indeed, if b ∈ B we may write
b =

∑
ciω
′
i with ci ∈ L. Now ci = tr(bωi) which is in A since the trace map

takes B into A by Corollary VII.1.6. Hence b ∈ Aω′1 ⊕ · · · ⊕ Aω′n. Thus
B is a submodule of a finitely generated A-module. Since A is Noetherian,
B is finitely generated Noetherian (as an A-module, a fortiori as a ring) by
Propositions 1.4 and 1.2 of Lang, Chapter X.
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A commutative ring R is called a Dedekind domain if it is integrally closed
in its field of fractions, Noetherian and every nonzero prime ideal is maximal.
For example a principal ideal domain is a Dedekind domain. The class of
Dedekind domains is important because many important rings are Dedekind
domains. For example the integral closure of Z in a finite extension E of Q is
called the ring of algebraic integers in E and it is a Dedekind domain. The
affine algebra (coordinate ring) of a nonsingular affine curve is a Dedekind
domain.

The next exercise is part of Exercise VII.7 in Lang’s Algebra. We’ll return
to this Exercise in Homework 4.

Problem 6. Let o be a Dedekind domain. Let K be its field of fractions.
Given a nonzero ideal a of o prove that there exists a product of maximal
ideals p1 · · · pr ⊆ a.

Solution. Suppose there are ideals a that do not contain products of nonzero
prime ideals. Since o is Noetherian, there is a maximal counterexample
a. Clearly a cannot be prime, so there exist elements x, y of o such that
x, y /∈ a and xy ∈ a. Now consider the ideals (x) + a and (y) + a. These
are strictly larger than a, so there exist primes p1, · · · , pr and p′1, · · · , p′s such
that (x) + a ⊇ p1 · · · pr and (y) + a ⊇ p′1 · · · p′s. Now observe that

a ⊇ ((x) + a)((y) + a) ⊇ p1 · · · prp′1 · · · p′s.

This is a contradiction.
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