
Math 210B: Homework 3

Recall that if a is an ideal of A the radical of a is

r(a) = {f ∈ A|fn ∈ a for some n > 0} .

This is an ideal containing a, and it is easy to see that r(r(a)) = r(a). The
ideal a is called radical if a = r(a).

Let k be a field, which we assume to be algebraically closed. Let An(k) be
affine n-space kn. If S is a subset of the polynomial ring k[X] = k[X1, · · · , Xn]
then

V (S) = {a = (a1, · · · , an) ∈ An(k)|f(a) = 0 for all f ∈ S} .

If a is the ideal generated by S and r(a) is the radical of a then V (S) =
V (a) = V (r(a)). Also if X is a subset of An(k) let

I(X) = {f ∈ k[X]|f(a) = 0 for all a ∈ a} .

It is an ideal. By the Nullstellensatz I(V (a)) = r(a).
The sets V (S) are called algebraic sets and last week you proved they

form the closed sets in a topology, called the Zariski topology on An(k). The
essential content of the Nullstellensatz is that a 7→ V (a) is a bijection between
radical ideals and Zariski closed sets.

A closed (i.e. algebraic) subset X of An(k) is called reducible if there exist
proper closed subsets Y, Z of X such that X = Y ∪ Z. If it is not reducible
it is called irreducible. I will call an irreducible closed set a variety though
this terminology is not universally adopted: often a variety is not required
to be irreducible.

Problem 1. Prove that V (a) is irreducible if and only if r(a) is prime.
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Problem 2. (a) Let A ⊂ F where F is a field, and let B be the integral
closure of A in F . Let S ⊆ A be a multiplicative set. Show that S−1B is the
integral closure of S−1A in F .

(b) Let A be an integral domain. We recall that we say A is integrally
closed if it is integrally closed in its field of fractions F . Show that A is
integrally closed if and only if Am is integrally closed for every maximal ideal
m of A.

Hint for (b): Let C be the integral closure of A in F . Let x ∈ C. Suppose
that x /∈ A. Let a = {f ∈ A|fx ∈ A}. Let m be a maximal ideal of A
containing a. Then ...

We recall the Extension Theorem for valuations that was proved in Week
2. If F is a field, a valuation ring of F is a subring R such that if x ∈ F then
either x ∈ R or x−1 ∈ R. A valuation ring is R a local ring. Its maximal
ideal p may be characterized as {x ∈ R|x−1 /∈ R} since in a local ring, the
nonunits comprise the unique maximal ideal.

Theorem 1. Let F be a field and A a subring of F . Let φ : A −→ Ω be
a homomorphism of A into an algebraically closed field Ω. Then φ may be
extended to a homomorphism Φ : R −→ Ω where R is a valuation ring of F .

This is Corollary 3.3 in Section VII.3 of Lang’s Algebra. It was also proved
in class and used to prove the Nullstellensatz. Use it in the next Exercise.

Problem 3. Let F be a field and A a subring of F . Show that the integral
closure of A in F is the intersection of all valuation rings of F containing A.

Hint: To prove that if x ∈ F is not integral over A then there is a valuation
ring R of F such that x /∈ R, show that x−1A[x−1] is contained in a maximal
ideal of A[x−1], then find a way to use the Extension Theorem.

Problem 4. Let F be a field and let R be the polynomial ring F [X, Y ] in
two variables. Give examples of prime ideals p and q such that the local ring
Rp is a valuation ring but the local ring Rq is not.

Problem 5. Let A be an integrally closed integral domain. This means
that it is integrally closed in its field of fractions K. Let L/K be a finite
separable extension and let B be the integral closure of A in L. Suppose that
A is Noetherian. Prove that B is a finitely-generated A-module and deduce
that B is also Noetherian.
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Hint: This is Problem 3 in the exercises to Chapter VII of Lang (page 353).
See Lang for the hint.

A commutative ring R is called a Dedekind domain if it is integrally closed
in its field of fractions, Noetherian and every nonzero prime ideal is maximal.
For example a principal ideal domain is a Dedekind domain. The class of
Dedekind domains is important because many important rings are Dedekind
domains. For example the integral closure of Z in a finite extension E of Q is
called the ring of algebraic integers in E and it is a Dedekind domain. The
affine algebra (coordinate ring) of a nonsingular affine curve is a Dedekind
domain.

The next exercise is part of Exercise VII.7 in Lang’s Algebra. We’ll return
to this Exercise in Homework 4.

Problem 6. Let o be a Dedekind domain. Let K be its field of fractions.
Given a nonzero ideal a of o prove that there exists a product of maximal
ideals p1 · · · pr ⊆ a.
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