Math 210B: Homework 2 Solutions

All rings are commutative with 1. Recall that if A C B are rings and
p, P are prime ideals of A, B respectively we say B lies above p if PN A = p.

Problem 1. Let p be a prime, so (p) = pZ is a prime ideal of Z. Determine
the primes P of the Gaussian integers Z[i] above (p). Thus determine the
number of different P and describe Z[i] /B for each PB. Your answer should
depend on p modulo 4.

Solution. If B is a prime of Z[i] above (p) then P is maximal by Lang
Proposition VIL.1.11, so Z[i]/B is a field containing F, = Z/(p). So may
identify Z[i]/B with a subfield of F,. Now the image of i in Z[i]/ is a
root a of the polynomial X2 + 1. This is a quadratic polynomial so either it
factors in F,, in which case Z[i]/P = F,, or it is irreducible, in which case
Z[i]/B = F,2. Given a we may recover the prime ideal 8 as the kernel of
the ring homomorphism Z[i] — F, such that i — a.

Suppose p =1 mod 4. Then F is a cyclic group of order a multiple of 4,
so —1 is a square in [F,. Let £a be the two square roots of —1. Then there
are homomorphisms Z[i] — F, such that i — £a, and the kernels of these
homomorphisms are prime ideals above (p). Thus in this case there are two
such prime ideals P; and By and both satisfy Z[i]/B; = F,,.

Next suppose p = 3 mod 4. In this case |F)| is not a multiple of 4 and
so —1 is not a square in F. But \IF;2| = p? — 1 = 1 mod 4, so there are
two roots @ and 3 of 22 + 1 = 0 in Fj2. Thus there are homomorphisms
¢,¢" : Z[i] — F,2 such that ¢(i) = o and ¢'(1) = . However f = a?
and ¢ = o0 o ¢ where o € Gal(F,2/F,) is the Frobenius automorphism, so ¢
and ¢’ have the same kernel 3. In this case there is one prime ideal 3 and
Z[i] /B = Fpe.

Finally if p = 2 there is one root (with multiplicity 2) of 2%+ 1 in Fy; that
root is 1. So there is a unique homomorphism Z[i] — Fs such that i — 1.
The kernel in this case is the principal ideal generated by 1+ ¢, which is the
unique principal ideal above (2).



Problem 2. Let A = Q[z,y] be the polynomial ring Q[X, Y] modulo the
ideal generated by the polynomial Y2 — X?(X + 1). This polynomial is
irreducible since X?(X + 1) is not a square in Q[X], so A is an integral
domain. If z,y are the images of X and Y then y? = 23 + 2. Let p be the
ideal generated by = and y. Let ¢ = y/x in the field of fractions of A.

(a) Show that p is maximal and that it is the unique prime ideal of A above
the ideal (z) of Q[z].

(b) Consider the rings Q[z] C Q[z,y] C Q[z, t], which are all subrings of the
field of fractions of A. How many prime ideals of Q[z, t] lie above p?

(c) Show that the ring A is not integrally closed.

Solution. (a) The polynomial Y2 — X?(X +1) is irreducible over Q[X] since
it is Eisenstein with respect to the ideal (X + 1). Hence it is irreducible as
an element of Q[X,Y]. It follows that Q[x,y] = Q[X,Y]/(Y? — X?(X + 1))
is an integral domain.

The ideal p = (z,y) of A is the kernel of the homomoorphism Q[z, y] —
Q such that x — 0 and y — 0. Thus Q[z,y|/p is a field and so p is maximal.

We show that p is the unique prime ideal of A above the prime ideal (x)
of Q[z]. If p’ is another such ideal, consider the ring A/p’. The images 2’
and 7/ in this ring satisfy (y')? = (2/)?(2’ +1). But 2’ = 0 so ¢/ = 0. Hence
p’ contains y as well as x and so p C p’. But p’ is maximal, so p’ = p.

(b) The subring B = Q[z, t] of the field K of fractions of Q|x, y] contains
A because y = tx. Now t is the solution of the equation t?> = x 4+ 1 which is
also Eisenstein over Q[z] with respect to the ideal 2+ 1. The homomorphism
Q[z] — Q such that = — 0 has two extensions to B in which ¢ — 1 and
t — —1. The kernels of these homomorphisms are two distinct prime ideals
of B above the ideal (z) of Q(x).

(c) It follows from (b) that B # A and so t ¢ A. But as a root of
t? = z + 1 it is integral over Q[z], a fortiori over Q[z,y]. Thus A is not
integrally closed.

Let K be a field. Define A"(K) = K" to be the affine space. You may
assume that K is infinite, so that f(z) = f(xy, -+ ,2,) in the polynomial
ring K[X| = K[Xj,---,X,] is zero as a polynomial if and only if it is zero
as a function on A"(K). When we discuss the Nullstellensatz we will assume

K is algebraically closed.
If S C K[X] define

V(S)={x € A"(K)|f(z) =0 for f € S}.
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We call V(S) an algebraic set. Clearly V(S) = V(a) where a is the ideal
generated by S, and indeed V' (S) = V(r(a)) where

r(a) ={f € K[X]|f" € A for some n > 0}
is the radical of A.

Problem 3. Prove that A"(K) has a topology in which the algebraic sets
are the closed sets. (This is the Zariski topology.)

Solution. To show that the algebraic sets are the closed sets in a topology,
we must show they are closed under arbitrary intersections and finite unions.

Let X; = V(a;) be a family of algebraic sets indexed i € I where a; are
ideals of K[X]. Then z € A"(K) lies in all X; if and only if f(z) = 0 for all
f in any a;; that is, f(z) =0 for all f € > a;. Thus

ﬂ V(X)) =V (Z ai) .

Now to show that if X = V(a) and Y = V(b) are algebraic then so is
X UY, we will show that

XUY =V(anb) = V(ab).

Note that if a C b then V(a) D V(b). Thus X C V(anb)and Y C V(anb)
and so V(X UY) C V(anb). Nowab Canb and so V(anb) C V(ab).
We claim that V(ab) C X UY. If z ¢ X UY then there is f € a such that
f(z) # 0 and g € b such that g(x) # 0. Thus fg € ab and (fg)(z) # 0. We
have proved that

XUY CV(anb)CV(ab) C XUY
so these sets are all equal, proving that X UY is an algebraic set.

The Jacobson radical J(A) is the intersection of all maximal ideals of A.
We encountered it in Nakayama’s Lemma.

Problem 4. Prove that the Jacobson radical equals

{acAll+abe A" forallbe A}.
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Solution. If a € J(A) and 1 + ab is not a unit, then 1 + ab € B for
some maximal ideal. But a € P8 so 1 € ‘B, contradiction. This proves that
J(A) C{aec All+abe A* for all b e A}.

On the other hand, suppose that 1 + ab is a unit for all b. To show
that a € J(A) we must show that a lies in every maximal ideal 3. If not,
BT+ aA = A so we may write 1 = m — ab for some 7 € P and b € B,
contradicting the assumption that 1 4 ab is a unit.

Problem 5. Let A be an integral domain, and () a field containing A. If Q2
is integral over A prove that A is a field.

Solution. Let 0 # z € A. Our hypothesis implies that 1/x € ) is integral
over A so we may write

1 n 1 n—1
— +an_1 | — +...+CLO:0, CLZ'GA.
T T

i = —(ap_1+ apox+ - ~a0:c"*1) €A
proving that A is a field.

Let A C B be rings, B integral over A, and let S be a multiplicative
subset of A. Then by Proposition VIL.1.8, S~ B is integral over S~1A. Now
let B be a prime ideal of B and p = AN*P. Then there is a homomorphism
A, — By and we might hope that By is integral over A,. The following
problem shows that this may not be true.

Then

Problem 6. Let k be a field of characteristic # 2. Let A = k[z? — 1] and
B = k[z]. Show that B is integral over A. Let B = (z —1)B and p = ANP.
Prove that 1/(z + 1) € By is not integral over A,.

Solution. Let P’ = (x + 1)B. We will show that ' N A = PN A = p.
Indeed, an element of A is a polynomial f(z? — 1) where f € k[X]. Write

f(X)=ap X+ 4 q.

Clearly f(z* —1) is divisible by x — 1 in B = k[z] if and only if ag = 0, in
which case it is divisible by x 4+ 1 also, so indeed P and B’ have the same
intersection with A.

Since B = k[z] is an integral domain, we may identify By and By with
subrings of its field of fractions k(x), and with this identification A, is a
subring of both.



Note that x + 1 ¢ B. Indeed P is the kernel of the homomorphism
B — k that sends « to 1, and x+1 is not in this kernel. Thus 1/(z+1) € By.

Now suppose that 1/1 4 x is integral over A,. This means that we have
a relation

! n+ ! n71+ + 0 €A
Ap_1 | —— =0, i .
z+1 "Nz +1 a0 “ r

l=—a,1(x+1)—... —ap(z+1)"

Thus

Since a; ¢ p, we have a; ¢ P, so the right hand side is an element of ' By
which is a proper ideal of By. This is a contradiction.



