
Math 210B: Homework 2 Solutions

All rings are commutative with 1. Recall that if A ⊆ B are rings and
p,P are prime ideals of A,B respectively we say P lies above p if P∩A = p.

Problem 1. Let p be a prime, so (p) = pZ is a prime ideal of Z. Determine
the primes P of the Gaussian integers Z[i] above (p). Thus determine the
number of different P and describe Z[i]/P for each P. Your answer should
depend on p modulo 4.

Solution. If P is a prime of Z[i] above (p) then P is maximal by Lang
Proposition VII.1.11, so Z[i]/P is a field containing Fp = Z/(p). So may
identify Z[i]/P with a subfield of Fp. Now the image of i in Z[i]/P is a
root α of the polynomial X2 + 1. This is a quadratic polynomial so either it
factors in Fp, in which case Z[i]/P ∼= Fp, or it is irreducible, in which case
Z[i]/P ∼= Fp2 . Given α we may recover the prime ideal P as the kernel of
the ring homomorphism Z[i] −→ Fp such that i 7→ α.

Suppose p ≡ 1 mod 4. Then F×p is a cyclic group of order a multiple of 4,
so −1 is a square in Fp. Let ±a be the two square roots of −1. Then there
are homomorphisms Z[i] −→ Fp such that i 7→ ±a, and the kernels of these
homomorphisms are prime ideals above (p). Thus in this case there are two
such prime ideals P1 and P2 and both satisfy Z[i]/Pi

∼= Fp.
Next suppose p ≡ 3 mod 4. In this case |F×p | is not a multiple of 4 and

so −1 is not a square in F×p . But |F×p2| = p2 − 1 ≡ 1 mod 4, so there are

two roots α and β of x2 + 1 = 0 in Fp2 . Thus there are homomorphisms
φ, φ′ : Z[i] −→ Fp2 such that φ(i) = α and φ′(i) = β. However β = αp

and φ′ = σ ◦ φ where σ ∈ Gal(Fp2/Fp) is the Frobenius automorphism, so φ
and φ′ have the same kernel P. In this case there is one prime ideal P and
Z[i]/P ∼= Fp2 .

Finally if p = 2 there is one root (with multiplicity 2) of x2 +1 in F2; that
root is 1. So there is a unique homomorphism Z[i] −→ F2 such that i 7→ 1.
The kernel in this case is the principal ideal generated by 1 + i, which is the
unique principal ideal above (2).
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Problem 2. Let A = Q[x, y] be the polynomial ring Q[X, Y ] modulo the
ideal generated by the polynomial Y 2 − X2(X + 1). This polynomial is
irreducible since X2(X + 1) is not a square in Q[X], so A is an integral
domain. If x, y are the images of X and Y then y2 = x3 + x2. Let p be the
ideal generated by x and y. Let t = y/x in the field of fractions of A.

(a) Show that p is maximal and that it is the unique prime ideal of A above
the ideal (x) of Q[x].

(b) Consider the rings Q[x] ⊆ Q[x, y] ⊆ Q[x, t], which are all subrings of the
field of fractions of A. How many prime ideals of Q[x, t] lie above p?

(c) Show that the ring A is not integrally closed.

Solution. (a) The polynomial Y 2−X2(X+1) is irreducible over Q[X] since
it is Eisenstein with respect to the ideal (X + 1). Hence it is irreducible as
an element of Q[X, Y ]. It follows that Q[x, y] = Q[X, Y ]/(Y 2 −X2(X + 1))
is an integral domain.

The ideal p = (x, y) of A is the kernel of the homomoorphism Q[x, y] −→
Q such that x 7→ 0 and y 7→ 0. Thus Q[x, y]/p is a field and so p is maximal.

We show that p is the unique prime ideal of A above the prime ideal (x)
of Q[x]. If p′ is another such ideal, consider the ring A/p′. The images x′

and y′ in this ring satisfy (y′)2 = (x′)2(x′ + 1). But x′ = 0 so y′ = 0. Hence
p′ contains y as well as x and so p ⊆ p′. But p′ is maximal, so p′ = p.

(b) The subring B = Q[x, t] of the field K of fractions of Q[x, y] contains
A because y = tx. Now t is the solution of the equation t2 = x + 1 which is
also Eisenstein over Q[x] with respect to the ideal x+1. The homomorphism
Q[x] −→ Q such that x 7→ 0 has two extensions to B in which t 7→ 1 and
t 7→ −1. The kernels of these homomorphisms are two distinct prime ideals
of B above the ideal (x) of Q(x).

(c) It follows from (b) that B 6= A and so t /∈ A. But as a root of
t2 = x + 1 it is integral over Q[x], a fortiori over Q[x, y]. Thus A is not
integrally closed.

Let K be a field. Define An(K) = Kn to be the affine space. You may
assume that K is infinite, so that f(x) = f(x1, · · · , xn) in the polynomial
ring K[X] = K[X1, · · · , Xn] is zero as a polynomial if and only if it is zero
as a function on An(K). When we discuss the Nullstellensatz we will assume
K is algebraically closed.

If S ⊆ K[X] define

V (S) = {x ∈ An(K)|f(x) = 0 for f ∈ S} .
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We call V (S) an algebraic set. Clearly V (S) = V (a) where a is the ideal
generated by S, and indeed V (S) = V (r(a)) where

r(a) = {f ∈ K[X]|fn ∈ A for some n > 0}

is the radical of A.

Problem 3. Prove that An(K) has a topology in which the algebraic sets
are the closed sets. (This is the Zariski topology.)

Solution. To show that the algebraic sets are the closed sets in a topology,
we must show they are closed under arbitrary intersections and finite unions.

Let Xi = V (ai) be a family of algebraic sets indexed i ∈ I where ai are
ideals of K[X]. Then x ∈ An(K) lies in all Xi if and only if f(x) = 0 for all
f in any ai; that is, f(x) = 0 for all f ∈

∑
ai. Thus

⋂
i∈I

V (Xi) = V

(∑
i

ai

)
.

Now to show that if X = V (a) and Y = V (b) are algebraic then so is
X ∪ Y , we will show that

X ∪ Y = V (a ∩ b) = V (ab).

Note that if a ⊆ b then V (a) ⊇ V (b). Thus X ⊆ V (a∩ b) and Y ⊆ V (a∩ b)
and so V (X ∪ Y ) ⊆ V (a ∩ b). Now ab ⊆ a ∩ b and so V (a ∩ b) ⊆ V (ab).
We claim that V (ab) ⊆ X ∪ Y . If x /∈ X ∪ Y then there is f ∈ a such that
f(x) 6= 0 and g ∈ b such that g(x) 6= 0. Thus fg ∈ ab and (fg)(x) 6= 0. We
have proved that

X ∪ Y ⊆ V (a ∩ b) ⊆ V (ab) ⊆ X ∪ Y

so these sets are all equal, proving that X ∪ Y is an algebraic set.

The Jacobson radical J(A) is the intersection of all maximal ideals of A.
We encountered it in Nakayama’s Lemma.

Problem 4. Prove that the Jacobson radical equals{
a ∈ A|1 + ab ∈ A× for all b ∈ A

}
.
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Solution. If a ∈ J(A) and 1 + ab is not a unit, then 1 + ab ∈ P for
some maximal ideal. But a ∈ P so 1 ∈ P, contradiction. This proves that
J(A) ⊆ {a ∈ A|1 + ab ∈ A× for all b ∈ A}.

On the other hand, suppose that 1 + ab is a unit for all b. To show
that a ∈ J(A) we must show that a lies in every maximal ideal P. If not,
P + aA = A so we may write 1 = π − ab for some π ∈ P and b ∈ B,
contradicting the assumption that 1 + ab is a unit.

Problem 5. Let A be an integral domain, and Ω a field containing A. If Ω
is integral over A prove that A is a field.

Solution. Let 0 6= x ∈ A. Our hypothesis implies that 1/x ∈ Ω is integral
over A so we may write(

1

x

)n

+ an−1

(
1

x

)n−1

+ . . .+ a0 = 0, ai ∈ A.

Then
1

x
= −(an−1 + an−2x+ · · · a0xn−1) ∈ A

proving that A is a field.
Let A ⊆ B be rings, B integral over A, and let S be a multiplicative

subset of A. Then by Proposition VII.1.8, S−1B is integral over S−1A. Now
let P be a prime ideal of B and p = A ∩P. Then there is a homomorphism
Ap −→ BP and we might hope that BP is integral over Ap. The following
problem shows that this may not be true.

Problem 6. Let k be a field of characteristic 6= 2. Let A = k[x2 − 1] and
B = k[x]. Show that B is integral over A. Let P = (x− 1)B and p = A∩P.
Prove that 1/(x+ 1) ∈ BP is not integral over Ap.

Solution. Let P′ = (x + 1)B. We will show that P′ ∩ A = P ∩ A = p.
Indeed, an element of A is a polynomial f(x2 − 1) where f ∈ k[X]. Write

f(X) = akX
k + · · ·+ a0.

Clearly f(x2 − 1) is divisible by x − 1 in B = k[x] if and only if a0 = 0, in
which case it is divisible by x + 1 also, so indeed P and P′ have the same
intersection with A.

Since B = k[x] is an integral domain, we may identify BP and BP′ with
subrings of its field of fractions k(x), and with this identification Ap is a
subring of both.
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Note that x + 1 /∈ P. Indeed P is the kernel of the homomorphism
B −→ k that sends x to 1, and x+1 is not in this kernel. Thus 1/(x+1) ∈ BP.

Now suppose that 1/1 + x is integral over Ap. This means that we have
a relation(

1

x+ 1

)n

+ an−1

(
1

x+ 1

)n−1

+ . . .+ a0 = 0, ai ∈ Ap.

Thus
1 = −an−1(x+ 1)− . . .− a0(x+ 1)n.

Since ai /∈ p, we have ai /∈ P′, so the right hand side is an element of P′BP′

which is a proper ideal of BP′ . This is a contradiction.
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