Math 210B: Homework 1 Solutions

Readings in Lang’s Algebra for these problems: Sections 7.1 and 8.1; also
Section 4.2 for Gauss’ Lemma and Section 6.5 for norm and trace.

For the first two problems, let R be an integral domain, F' its field of
fractions, K/F a larger field. Let o € K. As we recall, « is defined to be
integral over R if it satisfies a monic polynomial f(«) = 0 where

fx)=a"+a, 12" ' +...+ag € Rlx].

However in this definition we do not require f to be irreducible. So « is also
a root of a monic polynomial

g(x) = 2™+ bp_1™ ..+ by € Fla]

that is irreducible in F'[z]|. The first two exercises give conditions for g € R|z].

Problem 1. Suppose that R is a unique factorization domain. Use Gauss’
Lemma to show that g(z) € R[z].

Solution: In the language of Section 4.2 in Lang’s Algebra the content
content(f) of a polynomial p € R[z] is the greatest common divisor of the
coefficients; it is only defined up to units. One version of Gauss’ Lemma
states that

content(pg) = content(p) content(q).

The content may be extended to F'[x] by multiplicativity.

We know that g generates the ideal {p € F[z]|p(a) = 0}, so g divides f
in F[z]. Thus we may write f = gh with g,h € F[z]. Now content(f) = 1
since f is monic and has coefficients in R[z|. Therefore if ¢ = content(g) we
may write f = gih, with ¢; = ¢ '¢g and h = ch. Then ¢; has content 1 and
by Gauss’ Lemma h; also has content 1. Now the leading coefficient of f is
1, so the product of the leading coefficients of g; and hy are also 1, and so ¢
is a unit. Therefore g has content 1, and in particular g € R][z].
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The next problem requires some Galois theory.

Problem 2. Now suppose that R is integrally closed and char(F) = 0. Let
aq, -+, Qp, be the roots of ¢ in a splitting field £ O K. Thus m = deg(g).
(a) Explain why the «; are distinct and

g(x) = (x —ar) - (& — am).
(b) Prove that b; € R, so just as in Problem 1, g € R[z].

Solution. For (a), in characteristic zero the roots of the irreducible
polynomial ¢ are distinct by the criterion that g and its derivative ¢’ are
coprime in F'[z]; this follows from the fact that ¢’ is nonzero and of degree less
than g, which is irreducible. Now F(aq,--- , ) is a Galois extension since
it is the splitting field of a polynomial with distinct roots. The coefficients
of

gi(x) = (v —an) - (& — o)

are in F'[x] because they are invariant under the Galois group. Thus g|g; but
actually g = ¢g; because every root of g; is a root of g.

For (b), each «; is integral over R, since they are all roots of the monic
polynomial f € R[z]. Since the elements of F that are integral over R form
a ring, it follows that each coefficient

bm—k = (—1)k Z Oéil s Oéik

11<--<ag

is an element of F' that is integral over R. Because R is integrally closed,
bk € R proving that g € R|x].

Problem 3. Let D be squarefree and consider @ = a + bv/D € Q (\/5)

Describe the norm and trace tr(a) and N(«). Prove that « is integral over
Z if and only if tr(a) and N(«) are in Z.

Solution: The conjugates of o over Q are « and 8 = a — bv/D, so the
norm and trace are:

a+ 8 = 2a, aff = a® — Db

Both «, 8 are integral over Z and so the norm and trace are elements of Q
that are integral over Z. But Z is integrally closed since it is a UFD. Thus



tr(a), N(«a) € Z. Conversely, if tr(a) and N(«) are in Z then « is a root of
the monic polynomial:

2 —tr(a)r + N(a) € Z[z].

Whether or not this polynomial is irreducible, this proves that « is integral
over 7.

Problem 4. Let p be a prime. Determine the integral closure of Z in Q (\/]_9)
and Q (v/—p). The shape of the answer should depend on p mod 4.

Solution: We consider more generally Q (\/E) with D squarefree. The

condition that a 4+ bv/D be integral is that 2a and a? — Db? be in Z, by
Problem 3. It follows that 4Db? = (2a)? — 4(a? — Db?) € Z and since D is
squarefree, this implies that 2b € Z. Let A = 2a and B = 2b. Then 4 divides
A% — DB?. The squares in Z/4Z are 0 and 1, so A and B must both be even
unless D = 1 mod 4 in which case A and B may both be even or both odd.

From this we deduce that a + bv/D € Z [\/E] (which is therefore the

integral closure) except in the case where D = 1 mod 4. If D = 1, then we
have proved that for a+bv/D to be integral over Z we so the integral closure
of Z is

{%(A + BVD)|A, B € Z, A, B both even or both odd}

which is the ring

1++vD
2

Z

1+vD
2

The generator is itself a root of the polynomial 22 — z + 1= € Z[x].

Problem 5. Let £ D K D F fields. Prove that the transcendence degrees
are additive:

tr.deg(E/F) =tr.deg(E/K) + tr.deg(K/F).

Solution: Let ay, - - , a,, be a transcendence basis of K/F and 51, -+, B,
be a transcendency basis of E/K. We claim «q, -+, ay, 51, , 5, are a
transcendency basis of E/F'. First note that E is algebraic over K (f1, -, Bn)
which in turn is algebraic over F'(aq, -« , um, 51, , Bn). Thus E is algebraic

over F(ag, -+, am,B1, -+, Bn).



It remains to be shown that the «;, §; are algebraically independent. If
there is a relation of algebraic dependence:

QS(O‘l?"' 705m7617"' 7571) :07

with (1, -, T, Y1, Yn) € Fla1, -+ T, Y1, ,Yn] a polynomial in
m + n variables. This may be rearranged as a relation

V(B - Br) =0
where

1/J<y17"' 7yn) — Z C(V)(a17... 7am>y11/1 yzn

veNn

and each cu) € Fly1, -+ ,Ym). Now cpy(on, - ,am,) € Fon, - ,am) C K

and since 31, - - - , B, are algebraically independent over K, each ¢,y (ay, -+, ap,) =
0. But since the a; are algebraically independent over F', this means ¢y = 0
as a polynomial in Flyi,--- ,ymn] and therefore ¢ is the zero polynomial,

proving the independence of the o, 3;.



