
Math 210B: Homework 1 Solutions

Readings in Lang’s Algebra for these problems: Sections 7.1 and 8.1; also
Section 4.2 for Gauss’ Lemma and Section 6.5 for norm and trace.

For the first two problems, let R be an integral domain, F its field of
fractions, K/F a larger field. Let α ∈ K. As we recall, α is defined to be
integral over R if it satisfies a monic polynomial f(α) = 0 where

f(x) = xn + an−1x
n−1 + . . .+ a0 ∈ R[x].

However in this definition we do not require f to be irreducible. So α is also
a root of a monic polynomial

g(x) = xm + bm−1x
m−1 + . . .+ b0 ∈ F [x]

that is irreducible in F [x]. The first two exercises give conditions for g ∈ R[x].

Problem 1. Suppose that R is a unique factorization domain. Use Gauss’
Lemma to show that g(x) ∈ R[x].

Solution: In the language of Section 4.2 in Lang’s Algebra the content
content(f) of a polynomial p ∈ R[x] is the greatest common divisor of the
coefficients; it is only defined up to units. One version of Gauss’ Lemma
states that

content(pq) = content(p) content(q).

The content may be extended to F [x] by multiplicativity.
We know that g generates the ideal {p ∈ F [x]|p(α) = 0}, so g divides f

in F [x]. Thus we may write f = gh with g, h ∈ F [x]. Now content(f) = 1
since f is monic and has coefficients in R[x]. Therefore if c = content(g) we
may write f = g1h1 with g1 = c−1g and h = ch. Then g1 has content 1 and
by Gauss’ Lemma h1 also has content 1. Now the leading coefficient of f is
1, so the product of the leading coefficients of g1 and h1 are also 1, and so c
is a unit. Therefore g has content 1, and in particular g ∈ R[x].
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The next problem requires some Galois theory.

Problem 2. Now suppose that R is integrally closed and char(F ) = 0. Let
α1, · · · , αm be the roots of g in a splitting field E ⊇ K. Thus m = deg(g).
(a) Explain why the αi are distinct and

g(x) = (x− α1) · · · (x− αm).

(b) Prove that bi ∈ R, so just as in Problem 1, g ∈ R[x].

Solution. For (a), in characteristic zero the roots of the irreducible
polynomial g are distinct by the criterion that g and its derivative g′ are
coprime in F [x]; this follows from the fact that g′ is nonzero and of degree less
than g, which is irreducible. Now F (α1, · · · , αm) is a Galois extension since
it is the splitting field of a polynomial with distinct roots. The coefficients
of

g1(x) = (x− α1) · · · (x− αm)

are in F [x] because they are invariant under the Galois group. Thus g|g1 but
actually g = g1 because every root of g1 is a root of g.

For (b), each αi is integral over R, since they are all roots of the monic
polynomial f ∈ R[x]. Since the elements of E that are integral over R form
a ring, it follows that each coefficient

bm−k = (−1)k
∑

i1<···<ak

αi1 · · ·αik

is an element of F that is integral over R. Because R is integrally closed,
bm−k ∈ R proving that g ∈ R[x].

Problem 3. Let D be squarefree and consider α = a + b
√
D ∈ Q

(√
D
)

.

Describe the norm and trace tr(α) and N(α). Prove that α is integral over
Z if and only if tr(α) and N(α) are in Z.

Solution: The conjugates of α over Q are α and β = a − b
√
D, so the

norm and trace are:

α + β = 2a, αβ = a2 −Db2.

Both α, β are integral over Z and so the norm and trace are elements of Q
that are integral over Z. But Z is integrally closed since it is a UFD. Thus
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tr(α), N(α) ∈ Z. Conversely, if tr(α) and N(α) are in Z then α is a root of
the monic polynomial:

x2 − tr(α)x+N(α) ∈ Z[x].

Whether or not this polynomial is irreducible, this proves that α is integral
over Z.

Problem 4. Let p be a prime. Determine the integral closure of Z in Q
(√

p
)

and Q (
√
−p). The shape of the answer should depend on p mod 4.

Solution: We consider more generally Q
(√

D
)

with D squarefree. The

condition that a + b
√
D be integral is that 2a and a2 − Db2 be in Z, by

Problem 3. It follows that 4Db2 = (2a)2 − 4(a2 − Db2) ∈ Z and since D is
squarefree, this implies that 2b ∈ Z. Let A = 2a and B = 2b. Then 4 divides
A2−DB2. The squares in Z/4Z are 0 and 1, so A and B must both be even
unless D ≡ 1 mod 4 in which case A and B may both be even or both odd.

From this we deduce that a + b
√
D ∈ Z

[√
D
]

(which is therefore the

integral closure) except in the case where D ≡ 1 mod 4. If D ≡ 1, then we
have proved that for a+ b

√
D to be integral over Z we so the integral closure

of Z is {
1
2
(A+B

√
D)|A,B ∈ Z, A,B both even or both odd

}
which is the ring

Z

[
1 +
√
D

2

]
.

The generator 1+
√
D

2
is itself a root of the polynomial x2 − x+ 1−D

4
∈ Z[x].

Problem 5. Let E ⊃ K ⊃ F fields. Prove that the transcendence degrees
are additive:

tr . deg(E/F ) = tr . deg(E/K) + tr . deg(K/F ).

Solution: Let α1, · · · , αm be a transcendence basis ofK/F and β1, · · · , βn
be a transcendency basis of E/K. We claim α1, · · · , αm, β1, · · · , βn are a
transcendency basis of E/F . First note that E is algebraic overK(β1, · · · , βn)
which in turn is algebraic over F (α1, · · · , αm, β1, · · · , βn). Thus E is algebraic
over F (α1, · · · , αm, β1, · · · , βn).
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It remains to be shown that the αi, βj are algebraically independent. If
there is a relation of algebraic dependence:

φ(α1, · · · , αm, β1, · · · , βn) = 0,

with φ(x1, · · · , xm, y1, · · · , yn) ∈ F [x1, · · · , xm, y1, · · · , yn] a polynomial in
m+ n variables. This may be rearranged as a relation

ψ(β1, · · · , βn) = 0

where
ψ(y1, · · · , yn) =

∑
ν∈Nn

c(ν)(α1, · · · , αm)yν11 · · · yνnn

and each c(ν) ∈ F [y1, · · · , ym]. Now c(ν)(α1, · · · , αm) ∈ F (α1, · · · , αm) ⊆ K
and since β1, · · · , βn are algebraically independent overK, each c(ν)(α1, · · · , αm) =
0. But since the αi are algebraically independent over F , this means c(ν) = 0
as a polynomial in F [y1, · · · , ym] and therefore φ is the zero polynomial,
proving the independence of the αi, βj.
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