
The Going Up and Going Down Theorems

The Going Up and Going Down theorems describe the behavior of prime ideals in integral
extensions. They were proved by Cohen and Seidenberg in 1946. They have geometric
meaning in terms of dimension.

All rings are commutative with 1.

The Going Up Theorem

The Going Up Theorem is the easier of the two. Most of it is already proved in Lang,
Chapter VII.

Theorem 1 (The Going Up Theorem). Let A ⊂ B be commutative rings with B integral
over A. Let p1 ⊂ p2 be prime ideals of A and let P1 be a prime ideal of B above P1. Then
B has a prime ideal P2 above p2 such that P1 ⊂ P2.

Proof. We apply Proposition VII.1.11 on page 339 to the pair of rings A/p1 ⊆ B/P1. Let
p2 be the image of p2 in A/p1. The Proposition guarantees the existence of a prime ideal P2

of B/P1 above p2. Pulling this ideal back to B gives P2.

Here is a slight strengthening of an assertion in Lang’s Proposition VII.1.10.

Proposition 2. Let A be an integral domain and B a ring that is integral over A. Let p be
a prime ideal of A. Then pB ∩ A = p.

Proof. Let Ap = S−1A and Bp = S−1B where S = A − p. Then Ap is a local ring with
maximal ideal pAp, and Bp is integral over Ap. By Proposition 1.10 of Lang, pBp is a proper
ideal of Bp and pBp ∩ Ap = pAp. However since p is prime, pAp ∩ A = p and so intersecting
the identity pBp ∩ Ap = pAp gives pB ∩ A ⊆ pBp ∩ A = pAp ∩ A = p.

Here is a strengthening of Lang’s Proposition VII.1.11.

Proposition 3. Let A ⊆ B be rings with B integral over A. Let q1 ⊆ q2 be prime ideals of
B. If q1 ∩ A = q2 ∩ A then q1 = q2.

Proof. Let S = A− p and consider Ap ⊆ Bp where Ap = S−1A and Bp = S−1B. This is an
integral extension. We have q1Bp ∩ Ap = q2Bp ∩ Ap = pAp which is a maximal ideal. By
Proposition VII.1.11 in Lang’s Algebra it follows that q1Bp is maximal. Since q1Bp ⊆ q2Bp

these ideals are equal. Restricting to B, we get q1 = q2.
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The Going Down Theorem

Let A ⊆ B be commutative rings and let a be an ideal of A. Let x ∈ B. We say that x is
integral over a if it satisfies a polynomial equation

xn + an−1x
n−1 + . . .+ a0, ai ∈ a. (1)

Proposition 4. Assume that A and B are integral domains with B integral over A. Then

{x ∈ B|x is integral over a} = r(Ba).

Proof. First suppose that x ∈ B is integral over a. Rearranging the equation (1) as follows:

xn = −(an−1x
n−1 + . . .+ a0)

the right-hand side is in Ba so x ∈ r(Ba).
Conversely, we show that every element of r(Ba) is integral over a. It follows from the

definition that if xn is integral over a then x is integral over a then so is x. Therefore it is
sufficient to show that every element of Ba is integral over a.

Thus let x ∈ Ba. We will prove that x is integral over a. We may assume that x 6= 0.
We define an ideal b of A[x−1], a subring of the field of fractions E of B. Let

b = {y ∈ A[x−1]|yx ∈ aA[x−1]}.

We will show that b = A[x−1]. If not, b is a proper ideal and we may embed it in a
maximal ideal m of A[x−1]. Consider the canonical homomorphism φ : A[x−1] −→ A[x−1]/m.
Let Ω be the algebraic closure of A[x−1]/m. By the Extension Theorem (Corollary VII.3.3
on page 348 of Lang) we may extend φ to a homorphism Φ : R −→ Ω where R is a valuation
ring of E containing A[x−1].

Note that R contains all of B since B is integral over A, hence over A[x−1] by Homework 3,
Problem 3. In particular R contains x but it also contains x−1 since A[x−1] ⊆ R. Thus x
is a unit in R and since ker(Φ) consists of the nonunits of R, we see that Φ(x) 6= 0. Now
x−1a ⊆ b by the definition of b so Φ(x−1a) = 0. Since Φ(x) 6= 0 it follows that Φ(a) = 0
and so Φ(aB) = 0. Since x ∈ aB and Φ(x) 6= 0, this is a contradiction. This contradiction
proves that b = A[x−1].

In particular 1 ∈ b which, from the definition of b means that x ∈ A[x−1]. We may
therefore write

x = a0 + a1x
−1 + · · ·+ anx

−n, ai ∈ a.

It follows that
xn+1 − a0xn − . . .− an = 0,

so x is integral over a.
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Proposition 5. Suppose that A is an integral domain that is integrally closed in its field of
fractions F . Let E be a field containing F , and let x ∈ E. Suppose that x is integral over
over A. Let

Xn + an−1X
n−1 + . . .+ a0

be the monic irreducible polynomial satisfied by x over F . Then the ai ∈ A. Moreover if p
is a prime ideal of A and if x is integral over p then the ai ∈ p.

Proof. The fact that the ai ∈ A is Problem 2 in Homework 2. To prove the last statement, let
L be an extension of E containing all the conjugates σi(x), as σ runs through the embeddings
of E into E over F . Let B be the integral closure of A in L.

Xn + an−1X
n−1 + . . .+ a0 =

∏
(X − σi(x)).

Now all the σi(x) are integral over p so by our previous Proposition they lie in r(pB). Hence
the coefficients ai lie in

r(pB) ∩ A ⊆ r(pB ∩ A) = r(p) = p

where we have used Proposition 2. Hence ai ∈ p.

Lemma 6. Let A ⊂ B be rings and let p be a prime ideal of A. Assume that pB ∩ A = p.
Then there exists a prime ideal P of B above p.

Note that we are not assuming that B is integral over A here.

Proof. Let S = A\p and let Bp = S−1B. Since p ∩ S = ∅ the ideal pBp is proper, so it is
contained in a maximal ideal m of Bp. Let P be the preimage of m under the canonical ho-
momorphism B → Bp. Then A∩P is the preimage of m under the canonical homomorphism
A→ Bp, which is the composition A→ Ap → Bp. Thus A ∩P = pAp = p.

Theorem 7 (The Going Down Theorem). Let A ⊆ B be integral domains with A integrally
closed in its field of fractions and B integral over A. Suppose that p1 ⊂ p2 are prime ideals
of A and q2 a prime ideal of B over p2. Then there exists a prime ideal q1 of B over p1 such
that q1 ⊂ q2.

Proof. Let F and E be the fields of fractions of A and B respectively.
We begin by showing that p1Bq2∩A = p1. The ⊇ inclusion is obvious, so let x ∈ p1Bq2∩A.

We may write x = y/s where x ∈ p1B and s ∈ B\q2. Let

Xr + u1X
r−1 + . . .+ ur

be the minimal polynomial of y over F . The coefficients ui are in p1 by Proposition 5.
Writing s = y/x, the minimal polynomial for s is

Xr + viX
r−1 + . . .+ vr, vi = ui/x

i.

The coefficients vi ∈ A since s ∈ B is integral over A and A is integrally closed.
Now we will argue that x ∈ p1. If not, then ui = vix

i and since vi ∈ B, xi /∈ p1 but
ui ∈ p1 we must have vi ∈ p1. Now

sr = −(v1s+ · · ·+ vr) ∈ p1B ⊆ p2B ⊆ q2
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and since q2 is prime, s ∈ q2, which is a contradiction. This completes the proof that
p1Bq2 ∩ A = p1.

Now by the Lemma there exists a prime q of Bq2 above p1. We take q1 = B ∩ q and we
are done.
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