The Going Up and Going Down Theorems

The Going Up and Going Down theorems describe the behavior of prime ideals in integral
extensions. They were proved by Cohen and Seidenberg in 1946. They have geometric
meaning in terms of dimension.

All rings are commutative with 1.

The Going Up Theorem

The Going Up Theorem is the easier of the two. Most of it is already proved in Lang,
Chapter VII.

Theorem 1 (The Going Up Theorem). Let A C B be commutative rings with B integral
over A. Let p1 C po be prime ideals of A and let Py be a prime ideal of B above B1. Then
B has a prime ideal Py above po such that Py C Ps.

Proof. We apply Proposition VIL.1.11 on page 339 to the pair of rings A/p; C B/%P;. Let
P, be the image of py in A/p;. The Proposition guarantees the existence of a prime ideal 3,
of B/ above p,. Pulling this ideal back to B gives B,. [

Here is a slight strengthening of an assertion in Lang’s Proposition VII.1.10.

Proposition 2. Let A be an integral domain and B a ring that is integral over A. Let p be
a prime ideal of A. Then pBN A =p.

Proof. Let A, = S7'A and B, = S™'B where S = A — p. Then A, is a local ring with
maximal ideal pA,, and B, is integral over A,. By Proposition 1.10 of Lang, pB, is a proper
ideal of B, and pB, N A, = pA,. However since p is prime, pA, N A = p and so intersecting
the identity pB, N A, = pA, gives pBNACpB,NA=pA,NA=p. O

Here is a strengthening of Lang’s Proposition VII.1.11.

Proposition 3. Let A C B be rings with B integral over A. Let q1 C g2 be prime ideals of
B. [fCh NA= QQﬂA then q1 = qa.

Proof. Let S = A — p and consider A, C B, where A, = S~'A and B, = S™'B. This is an
integral extension. We have q:8, N A, = q28, N A, = pA, which is a maximal ideal. By
Proposition VII.1.11 in Lang’s Algebra it follows that q; B, is maximal. Since q;B, C q2B5,
these ideals are equal. Restricting to B, we get q; = ga. O]



The Going Down Theorem

Let A C B be commutative rings and let a be an ideal of A. Let x € B. We say that x is
integral over a if it satisfies a polynomial equation

2" 4 ap1x™ N+ .+ a, a; € a. (1)
Proposition 4. Assume that A and B are integral domains with B integral over A. Then
{x € Blx is integral over a} = r(Ba).
Proof. First suppose that z € B is integral over a. Rearranging the equation (1) as follows:
" = —(a,_12" 7+ .+ ag)

the right-hand side is in Ba so x € r(Ba).

Conversely, we show that every element of r(Ba) is integral over a. It follows from the
definition that if 2" is integral over a then x is integral over a then so is . Therefore it is
sufficient to show that every element of Ba is integral over a.

Thus let x € Ba. We will prove that x is integral over a. We may assume that z # 0.
We define an ideal b of A[z7!], a subring of the field of fractions E of B. Let

b={yc Az |yx € aAlz7']}.

We will show that b = A[z~!]. If not, b is a proper ideal and we may embed it in a
maximal ideal m of A[z~!]. Consider the canonical homomorphism ¢ : A[z™!] — Az~!]/m.
Let Q be the algebraic closure of Alz~!]/m. By the Extension Theorem (Corollary VII.3.3
on page 348 of Lang) we may extend ¢ to a homorphism ® : R — ) where R is a valuation
ring of E containing A[z~1].

Note that R contains all of B since B is integral over A, hence over A[z~!] by Homework 3,
Problem 3. In particular R contains z but it also contains x~! since A[z~'] C R. Thus z
is a unit in R and since ker(®) consists of the nonunits of R, we see that ®(z) # 0. Now
z7'a C b by the definition of b so ®(z~'a) = 0. Since ®(z) # 0 it follows that ®(a) = 0
and so ®(aB) = 0. Since z € aB and ®(z) # 0, this is a contradiction. This contradiction
proves that b = A[z7!].

In particular 1 € b which, from the definition of b means that z € A[z~!]. We may
therefore write

r=ay+az 4 +apx", a; € a.

It follows that

" — g — ... —a, =0,

so x is integral over a. O



Proposition 5. Suppose that A is an integral domain that is integrally closed in its field of
fractions F. Let E be a field containing F', and let x € E. Suppose that x is integral over
over A. Let

X"+ a, 1 X" 1 4+.. . +a
be the monic irreducible polynomial satisfied by x over F. Then the a; € A. Moreover if p

is a prime ideal of A and if x is integral over p then the a; € p.

Proof. The fact that the a; € A is Problem 2 in Homework 2. To prove the last statement, let
L be an extension of £ containing all the conjugates oi(x), as o runs through the embeddings
of F into E over F. Let B be the integral closure of A in L.

X"+ a1 X" tag= H(X —oi(z)).

Now all the 0;(z) are integral over p so by our previous Proposition they lie in r(pB). Hence
the coeflicients a; lie in
r(pB)NACr(pBNA)=r(p) =p

where we have used Proposition 2. Hence a; € p. O]

Lemma 6. Let A C B be rings and let p be a prime ideal of A. Assume that pBN A = p.
Then there exists a prime ideal B of B above p.

Note that we are not assuming that B is integral over A here.

Proof. Let S = A\p and let B, = S™'B. Since p NS = & the ideal pB, is proper, so it is
contained in a maximal ideal m of B,. Let 3 be the preimage of m under the canonical ho-
momorphism B — B,. Then AN'P is the preimage of m under the canonical homomorphism
A — B,, which is the composition A — A, — B,. Thus ANP = pA, = p. O

Theorem 7 (The Going Down Theorem). Let A C B be integral domains with A integrally
closed in its field of fractions and B integral over A. Suppose that py C po are prime ideals
of A and qo a prime ideal of B over ps. Then there exists a prime ideal q, of B over p; such
that q1 C qo.

Proof. Let F' and FE be the fields of fractions of A and B respectively.
We begin by showing that p; B;,NA = p;. The D inclusion is obvious, so let x € p, B,,NA.
We may write x = y/s where x € p1 B and s € B\qy. Let

X" +u X+ 4u,

be the minimal polynomial of y over F. The coefficients u; are in p; by Proposition 5.
Writing s = y/«, the minimal polynomial for s is

X'+, X" . 4o, v; = u; /.

The coefficients v; € A since s € B is integral over A and A is integrally closed.
Now we will argue that x € p;. If not, then u; = v;z' and since v; € B,z ¢ p; but
u; € p; we must have v; € p;. Now

s"=—(vs+--+v) EMBCPBCq

3



and since o is prime, s € (o, which is a contradiction. This completes the proof that

pqu2 NA= pi1.
Now by the Lemma there exists a prime q of B,, above p;. We take q; = BN q and we
are done. []



