Dimension 11

The dimension theory of commutative rings is essentially a local theory. Indeed, the Krull
dimension of a ring Noetherian A (always commutative) is defined to be the supremum of
the lengths of saturated chains of prime ideals:

Po%plg---gpd-

(Nagata gave an example of a Noetherian ring with infinite Krull dimension but these do
not usually arise in practice.) Since the chain is saturated m = p; must be maximal, and
the local ring A, clearly has the same Krull dimension as A.

In these notes we will prove a main result of dimension theory, Krull’s Dimension the-
orem. This requires some digressions that are of interest beyond the Dimension Theorem,
the primary decomposition for Noetherian rings, and the Hilbert and Hilbert-Samuel poly-
nomials. The proof of the Dimension Theorem involves an interesting mixture of different
techniques to prove the equivalence of three different definitions of dimension.

The syllabus recommends Matsumura’s book on Commutative Algebra for Dimension
Theory. Another good reference is the last chapter of the book Atiyah and Macdonald,
which also has a good discussion of the primary decomposition. Atiyah and Macdonald
is notable for being short and always going to the heart of the matter, so we recommend
it. Both books of Matsumura and Atiyah and Macdonald are available on-line through the
Stanford Libraries.

Primary Decomposition

The primary decomposition was proved by Emmanuel Lasker while he was still world Chess
Champion. It was generalized to Noetherian rings by Emmy Noether.

If A is a Dedekind domain, every nonzero ideal a can be written as the product of ideals
qi, each of which is a power p;* of a prime ideal p;. Since the q; are coprime, this is the same
as the intersection: .

a= ﬂ q;-
i=1

This useful fact generalizes to arbitrary ideals in a commutative ring. In contrast with the
case of a Dedekind domain, the corresponding primary decomposition is not unique, but it
has some uniqueness properties.

An ideal q in a ring A is primary if xy € q implies that either x € q or y™ € q for some
n. Equivalently, every zero divisor in A/q is nilpotent.
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Lemma 1. If q is primary then r(q) is prime.

Proof. Suppose that zy € 7(q). Then zVy" € q for some N. Thus either 2V € q or

(y™)™ € q for some n. Thus either x € 7(q) or y € r(q). O
If q is primary and r(q) = p then we say that q is p-primary.
Lemma 2. Suppose that q1,qs are p-primary ideals. Then qy N qo is also p-primary.

Proof. We have r(q1 N q2) = r(q1) N7(q2) = pNp = p. To show q; Ngs is p-primary, suppose
that zy € q1Nqy but x ¢ q1Nqe. Then either z ¢ q; or = ¢ 2. By symmetry, we may assume
that x ¢ q;. Then since xy € q; which is p-primary, we have y € p =r(q1) = r(q1 N q2). O

Lemma 3. If q is an ideal such that r(q) is mazimal, then q is primary.
Proof. See Homework 5, Problem 1. m

Lemma 4. Suppose that A is Noetherian and m is maximal. If a is any ideal of A, then a
1s m-primary if and only if m O a D m" for some n.

Proof. Suppose that a is m-primary. Then r(a) = m so m 2O a. To show that a O m” for
some n let z1,..., 7, be generators of m. Then z¥ € a for some k. Now m" is generated
by elements of the form xi*---x% where Y a; = n. If n > kr this forces some a; > k so
a-om”.

Conversely, suppose that m O a O m”. Then

so r(a) = m is maximal and therefore a is m-primary by Lemma 3. [

Theorem 5. If A is Noetherian, then every ideal a may be expressed as a finite intersection
of primary ideals.

Proof. Let us define an ideal q to be irreducible if whenever q is written as an intersection
of two ideals, ¢ = b M ¢ either g = b or ¢ = ¢. For example a maximal ideal is irreducible.

We may write any ideal a as an intersection of irreducible ideals. Indeed, if this is not
so let a be a maximal counterexample. Then a is not irreducible so we may write a =bN¢
with b and ¢ strictly larger. But since a is a maximal counter example, both b and ¢ can be
written as intersections of irreducible ideals, and hence so can a. This is a contradiction.

Hence it will be sufficient to show that an irreducible ideal q is primary. Assume that q
is irreducible. Hence in the ring A = A/q, the ideal (0) is irreducible. If we show that (0) is
primary in A, it will follow that q is primary in A. So we may assume that q = 0.

Thus suppose that (0) is an irreducible ideal in A. We will show that 2y = 0 implies y = 0
or " = 0 for some n. Assume that y # 0. We consider the ideals a,, = {z € A|zz™ = 0}.
Since
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and A is Noetherian, this chain stabilizes and a,, = a,; for some n. We will show that
" = 0.

Let us show that (y) N (") = 0. Indeed, if a is in this intersection we may write
a = yz = war". Since xy = 0 we have xa = ryz = 0 and so wz™"! = 0. This means that
w € a,.1. Since a,.1 = a, we see that wz™ = 0, that is a = 0.

Now (0) is irreducible and (y) N (z™) = 0. Since (y) # 0 we have (z") = 0 proving =" = 0.
We have shown that (0) is primary, as required. O

By Lemma 2 we may combine all primary ideals with a given radical, and hence in the
decomposition

a=()a  q primary, (1)
=1

we may assume that the r(q;) are distinct. We may also discard any g; if removing it does
not change the intersection, so we may assume q; does not contain ﬂj 2 9;- With these
assumptions we call the representation of a in (1) a (reduced) primary decomposition.

Example 6. The primary decomposition may not be unique. For example in the polynomial
ring k[x,y], where k is a field, the ideal a = (22, zy) has two distinct primary decompositions:

a= ()N (% y) = (x) N (2% 2y,5%).

Both decompositions are primary. Indeed (z) is prime, hence primary, while (x?,y) and
(22, 2y, y?) are primary by Lemma 3 since their radical (x,vy) is mazimal.

If a is an ideal and x € A let
(a:z)={y € Alzy € a} .
It is an ideal of A containing a.

Lemma 7. Suppose that q is p-primary. Then
(i) if v € q then (q: z) = A;

(it) if v ¢ q thenr((q:z)) =p;

(i) if x ¢ p then (q:z) =q.

Proof. This is easy and we leave it to the reader. O

Although the primary decomposition is not unique, it has some uniqueness properties.
In particular:

Theorem 8. Let a =()q; be a reduced decomposition into primary ideals. Then the prime
ideals p; = r(q;) are independent of the choice of decomposition.

The p; = r(q;) are called the associated primes of the ideal a, and the theorem shows that
they do not depend on the choice of reduced primary decomposition.



Proof. We note that

r((a: ) = p (2)

¢q;

Indeed the left-hand side is (), 7((g; : 2)) so this follows from the Lemma.

Using (2) we may show that the p; are precisely the prime ideals that occur among the
r((a : z)) as x runs through the elements of A. First note that since the decomposition is
reduced, there exists x ¢ q; such that x € q; for all j # i. (Otherwise we could omit g;
from the intersection a = Ng;.) Then r((q;)) = p; by the Lemma. Conversely, suppose that
p ;= r((a : z)) is prime: we claim that p is one of the p;. Indeed, by (2) p contains the
intersection of some of the p;. We write p = (,cg 9. If p is not one of the p;, then for each
i € S we may find € p; — p and then []Jx; will be in (),.¢p; but not in p, which is a
contradiction.

Since we have an intrinsic characterization of the p; independent of the decomposition,
the theorem is proved. O

Proposition 9. Let a =q; N ---Nq, be a primary decomposition, and let p; = r(q;) be the
associated primes. Then any prime ideal p that contains a contains one of the p;.

Proof. First note that p D g; for some i. Indeed, if not let x; € q;\p for each i. Then [] z; is an
element of a = (") g; that is not in p, which is a contradiction. Then p = r(p) D r(q;) = p;- U

This shows that there are a finite number of minimal primes containing a, and that these
are precisely the primes that are minimal among the associated primes p; = r(q;). (Example 6
shows that there may be inclusion relations among the p;, so the minimal associated primes
may not be all of them.) Indeed, the Proposition immediately implies:

Corollary 10. Let a be an ideal in a Noetherian ring. Then there are a finite number of
prime ideals that are minimal among the prime ideals containing a. These are the minimal
r(q;) for a primary decomposition a =gy N -+ N qy.

This fact has a geometric meaning.

Corollary 11. Let A = O(X) be the affine algebra of affine algebraic variety, and let Y =
V(a) be a Zariski-closed subset, for some ideal a in A. Then'Y has a unique decomposition
into a union of mazimal closed irreducible subsets Y; = V(p;) where p; are the minimal
associated primes.

Hilbert Polynomial

Let G be a Noetherian graded ring. This means that G is a ring and that we have a
decomposition G = @zozo G into additive subgroups Gy such that GG} C G;. Thus Gy
is a subring and G is an Gy-algebra. At first we will assume that Go = k is a field, and later
relax this assumption. If x € G; we say x is homogeneous of degree 1.



Let M be a graded G-module. This means M itself has a decomposition M = ;- , M
and that GyM; C M;,;. We assume that M is finitely-generated. This implies that
dim(My) < oo and we define the Hilbert series to be the formal power series

Py (t) = idim(Mk)tk.

Theorem 12. Suppose that G is generated as a k-algebra by elements x; that are homoge-
neous of degree d; (i =1,--- ,r). Then

Py(t) =

where g(t) is a polynomial.

Proof. Let G' = k[x1,--- ,x,_1]. Tt too is a graded k-algebra.

Multiplication by z, is a graded G-module endomorphism of M of degree d,.; this means
that it maps M; into M, 4. Let K and @ be the kernel and cokernel of this endomorphism.
Then we have an exact sequence

0 — K; — M; 2 Mg — Qirq. — 0.
Since M is Noetherian, K and ) are finitely generated as G-modules. We thus have
dim(K;) — dim(M;) + dim(M;4q,) — dim(Q;44,) = 0.
Multiplying this identity by ¢t*+% and summing over i gives
% P (t) — t% Pas(t) + Pay(t) — Po(t) =0
or
py(t) = T A0

We wish to apply induction and substitute the Hilbert series for Py(t) and Pk (t). Now
think of G = G'[z,] as a graded ring generated over G’ by one variable x,. Both modules @
and K are annihilated by z, so the Hilbert series for them is the same whether we compute
it as G-modules or as G’-modules. Thus only factors 1 — t%, .- |1 — t% -1 appear in their
denominators. O

We recall the notion of length of a module. A module M over a ring is simple if it
is nonzero, but has no proper, nonzero submodules. Thus a vector space is simple if it is
one-dimensional. A composition series for a module M has a filtration by submodules:

OZMO;MlggMg:M

The Jordan-Holder theorem asserts that if M has a composition series, then all composition
series have the same length ¢ = ¢(M). This is the length of M. The Jordan-Hoélder series is
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proved for groups (where there is an analogous assertion) in Lang’s Algebra, Chapter 1. The
proof for modules is omitted in Lang, but it is identical to the group case. If the module has
no composition series we write £(M) = oo.

The length is additive in the sense that if we have a short exact sequence

0—M —M-— M —0

then M has a composition series if and only if both M’ and M" do, and ¢(M) = ((M') +
oM.

Now let A be a Noetherian local ring with maximal ideal m. Then m’/m‘™! is a vector
space over k = A/m. Its length as an A-module equals its dimension as a k-vector space.
On the other hand A/m’ is not a vector space over k. It is, however an A-module and

((A/m™) = iﬁ(mk/mk“) — nz:dim(mk/mk“). (3)

Theorem 13. Suppose that A is a Noetherian local ring with mazimal ideal m. Then there
exists a polynomial xw(n) such that if n is sufficiently large, then ((A/m"™) = xu(n). If
r = dim(m/m?) then the degree of Xm is < .

The polynomial y,, is called the Hilbert-Samuel polynomaial.

Proof. Define a graded algebra G = Gz(A) as follows. The homogenous part of degree i is
G, = m /mit!

and the multiplication G; x G; — G is induced by the multiplication m* x m/ — m**J.
We treat G' as a module over itself and consider its Hilbert series. Now G is generated by
its elements of degree 1, and r is the number of generators needed, so the Hilbert series has

the form
Zdlm it % 0y (”Z_ 1>ti

i=0
Now if f(t) = > a;t" then comparing the coefficients of t" we obtain (provided n > deg(f))
the identity
deg(/f) .
. r+n—j—1
d n n+ly ) )
im(m”/m"™) Zaj( n— i )
7=0
Here (’”“”:7‘1) is a polynomial of degree r — 1. Thus there exists a polynomial p of degree
< r — 1 such that for sufficiently large n we have

dim(m™/m" ) = p(n).

Using (3) implies that there exists a polynomial x,, of degree < r such that if n is sufficiently
large, then ¢(A/m"™) = yn(n). O



The Krull Dimension Theorem

We may now define two more invariants of the Noetherian local ring A. First, let d(A) =
deg(xm). Second, let §(A) be the minimal number of generators required for an m-primary
ideal. We may now state the main theorem of dimension theory.

Theorem 14 (Krull Dimension Theorem). Let A be a Noetherian local ring. Then
dim(A) = §(A) = d(A)
Proof. To prove this, we will have to prove inequalities

d(A) < 8(4),  §(A) < dim(4),  dim(A) < d(A).

Each inequality uses a different technique.

The inequality d(A) < §(A)

It may be true that the degree of the polynomial x,(n) is less than dim(m/m?). For example,
consider the local ring at (0,0) of the curve y* = z%(z + 1). Then m/m? requires two
generators, so 7 = 2. However if ¢ > 1 then dim(m’/m®"1) is two dimensional, spanned by
x' and '~ 1y. Using (3) it follows that xu(n) = 2n — 1, which has degree 1, not 2. Let d(A)
be the degree of the polynomial x,. Eventually we will show that this equals dim(A), and
this statment is part of the Krull dimension theorem.

However we can improve Theorem 13. Note that dim(m/m?) is the number of elements
required to generate m. So we have proved that deg(xn) is < the number of elements
required to generate m. This number can be optimized by considering instead of m itself, an
m-primary ideal q.

Theorem 15. Let q be an m-primary ideal, and suppose that q can be generated by r ele-
ments. Then deg(xm) < .

Proof. We may define a graded ring G4(A) as before. The homogeneous part is G; = q°/q"™.
The main difference is that now Gy = A/q is no longer a field, so we will have to replace
dimensions by lengths in the preceding arguments, but the same proof shows that there is a
polynomial p, of degree < r such that

Ua"/a") = pg(n) (4)

for sufficiently large n, and we deduce that there exists a polynomial x4 such that ¢(A/q") =
Xq(n). Since r(q) = m and q is finitely generated, we have q* C m for some k. On the
other hand, every generator of q has degree 1 in the graded ring G(A). So again the form
of the Hilbert series is ¢(t)/(1 — )" for some polynomial ¢, leading to (4) and the bound
deg(py) < r— 1. As before this implies that there is a polynomial x4(n) of degree < r such
that

((A/q") = xq(n)
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for sufficiently large n.
Now since q is m-primary there exists an N such that m O q D m”. There

mn 2 qn QmNn

50 Xm(n) < Xq(n) < Xm(Nn). This implies that deg(m) = deg(q) proving that deg(xm) <
T, =

The inequality 0(A) < dim(A)

We define the height of a prime ideal p in a ring A to be the length d of the longest possible
chain of prime ideals

PSP GG Gpa=p.

Thus the Krull dimension of A the maximal height of any prime in A, and if A is local the
Krull dimension is the height of its prime ideal m.

Lemma 16. Suppose that a is an ideal and py,--- ,p, are prime ideals such that a is not
contained in any p;. Then a is not contained in | J, p;.

Proof. This is clearly true if n = 1. By induction, we suppose it is true for n — 1. Arguing
by contradiction, suppose that a C |J, p;. But for each 1 < j < n, we have a ¢ U#j P;, SO
we take an element x; that is in a but not U#j p;. Then z; must be in p; since a C (J, p;.
Now consider

n
J=1 iz

This is in a so it must be in some p;. We write

xZHJCz—i—fL’kZHiUz

itk J#k i#j.k

Since x and x;, are in p; we must have H#k x; € pg. But this is a contradiction since x; ¢ py,
if 7 £ k, and p;, is prime. m

Proposition 17. Let A be a Noetherian local ring with mazimal ideal m. Let d = dim(A) =
height(m). Then there exists a sequence x1,- -+ ,xq € m such that every prime ideal contain-
ing (x1,--- , ;) has height > i and such that the ideal (xq,--- ,xq) is Mm-primary.

Proof. Suppose that xi,---,x; are constructed with ¢ < d. We will show how to con-
struct ;1. From Corollary 10 there are only a finite number of minimal primes containing
(1, -+, ;). Let S be the set of such minimal primes that have height exactly 7. (The set S
may be empty.) Note that if (z1, -+ ,2;) Cp and p ¢ S then height(p) > i.

Since i < d and d = height(m), none of the primes in S are m, so by the Lemma, m is not
contained in the union of the primes in S. Therefore we may choose z;,1 € m such that x;
is not in any of the primes in S. Now let p be any prime ideal containing (z1, -+, x;11). We



must show that height(p) > i+ 1. The prime p contains one of the primes p’ that is minimal
among those containing xy,--- ,x;. If p’ € S then p 2 p’ so height(p) > height(p’) = i. On
the other hand, if p’ ¢ S, then height(p) > i also, and so we are done.

We have constructed zq, - - - , x4 inductively. Any prime ideal containing all of them has
height d, and since m is the unique ideal of height d, we see that r((z1,---,z4)) = m.
Therefore (z1,--- ,x4) is m-primary. O

Corollary 18. Let A be a Noetherian local ring with maximal ideal m. Then A has an
m-primary ideal that is generated by r elements, where r < dim(A). Hence 6(A) < dim(A).

The inequality dim(A) < d(A)
We recall the Artin-Rees Lemma.

Proposition 19 (Artin-Rees Lemma). Let A be a Noetherian ring and M a finitely-generated
A-module. Let N be a submodule of M and let a be an ideal of A. Then there exists a constant
r such that

a’MNN=a"(a"MNN)

for allm > r.
Proof. See Lang’s Algebra, Corollary X.5.5 on page 429. [

Theorem 20. Let A be a Noetherian local ring with mazimal ideal m. Then dim(A) < d(A),
where we recall that d(A) is the degree of the polynomial xw such that xm(n) = ((A/m™) for
n large.

Proof. Let po G p1 G -+ G pg be a saturated chain of prime ideals such that p; = m, where
d = dim(A). We will show d < d(A).

Note that we may replace A by A/po. Indeed, inside of A/py we have a chain of prime
ideals p;/po, so if we can prove the result with this assumption we will have d < d(A/pg) <
d(A). Thus we may assume that py = 0 and that A is an integral domain.

Let 0# a € p;. Let a = (a) and let A = A/a. We will denote the image of m in A as m.
Since A has a chain of prime ideals of length dim(A) — 1, we see that dim(A) < dim (A4) + 1.
By induction on dim(A) we may assume that dim (Z) <d (Z) so it will be sufficient to show
that d (A) < d(A) — 1.

By the Artin-Rees Lemma there exists a constant k such that aNm”™ = m"*(anmk) for
k > n. We have a surjective homomorphism A/m” — A/ and the kernel is

(a+m")/m" =Za/(anm”).
Thus for sufficiently large n

Xa(n) = £ (A/m") = ((A/m") — l(a/(@aNm")) = xm(n) — €(a/(aNm™)). (5)



This proves that there exists a polynomial f(n) such that for sufficiently large n

t(a/(anm™)) = f(n).

We will argue that the polynomials f and x,, have the same degree and leading coefficients,
so that when they are subtracted, the leading terms cancel. If this is true we will have prove
that d (A) < d(A), and we will be done.

By the Artin-Rees Lemma there exists an r such that if n > r then

anm”=m"""(anm’),

SO
f(n) =L(a/m""(anm”)).
We have
am"Canm” Ca
SO
am” Cm" "(anNnm”) Cm" "a
SO

la/m""a) < Lla/m""(anm")) < L(a/m"). (6)

Now the ideal a = (a) is principal so a = A as a module and
(a/m"a) = £(A/m") = xm(n)
for sufficiently large n. Thus (6) reads
Xm(n = 1) < f(n) < Xu(n).

Since we know a priori that f(n) is a polynomial, this inequality shows that its degree and
leading coefficient are the same as x,,. Writing (5) as

Xw(n) = Xm(n) — f(n)
it follows that d (Z) = deg (xm) < deg(xm) = d(A), as required. O]

We have now proved all three inequalities
dim(A) < d(A) < 6(A) < dim(A)

and the Krull dimension theorem is now proved. O
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