
Dimension II

The dimension theory of commutative rings is essentially a local theory. Indeed, the Krull
dimension of a ring Noetherian A (always commutative) is defined to be the supremum of
the lengths of saturated chains of prime ideals:

p0 $ p1 $ · · · $ pd.

(Nagata gave an example of a Noetherian ring with infinite Krull dimension but these do
not usually arise in practice.) Since the chain is saturated m = pd must be maximal, and
the local ring Am clearly has the same Krull dimension as A.

In these notes we will prove a main result of dimension theory, Krull’s Dimension the-
orem. This requires some digressions that are of interest beyond the Dimension Theorem,
the primary decomposition for Noetherian rings, and the Hilbert and Hilbert-Samuel poly-
nomials. The proof of the Dimension Theorem involves an interesting mixture of different
techniques to prove the equivalence of three different definitions of dimension.

The syllabus recommends Matsumura’s book on Commutative Algebra for Dimension
Theory. Another good reference is the last chapter of the book Atiyah and Macdonald,
which also has a good discussion of the primary decomposition. Atiyah and Macdonald
is notable for being short and always going to the heart of the matter, so we recommend
it. Both books of Matsumura and Atiyah and Macdonald are available on-line through the
Stanford Libraries.

Primary Decomposition

The primary decomposition was proved by Emmanuel Lasker while he was still world Chess
Champion. It was generalized to Noetherian rings by Emmy Noether.

If A is a Dedekind domain, every nonzero ideal a can be written as the product of ideals
qi, each of which is a power peii of a prime ideal pi. Since the qi are coprime, this is the same
as the intersection:

a =
m⋂
i=1

qi.

This useful fact generalizes to arbitrary ideals in a commutative ring. In contrast with the
case of a Dedekind domain, the corresponding primary decomposition is not unique, but it
has some uniqueness properties.

An ideal q in a ring A is primary if xy ∈ q implies that either x ∈ q or yn ∈ q for some
n. Equivalently, every zero divisor in A/q is nilpotent.
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Lemma 1. If q is primary then r(q) is prime.

Proof. Suppose that xy ∈ r(q). Then xNyN ∈ q for some N . Thus either xN ∈ q or
(yN)n ∈ q for some n. Thus either x ∈ r(q) or y ∈ r(q).

If q is primary and r(q) = p then we say that q is p-primary .

Lemma 2. Suppose that q1, q2 are p-primary ideals. Then q1 ∩ q2 is also p-primary.

Proof. We have r(q1∩ q2) = r(q1)∩ r(q2) = p∩ p = p. To show q1∩ q2 is p-primary, suppose
that xy ∈ q1∩q2 but x /∈ q1∩q2. Then either x /∈ q1 or x /∈ q2. By symmetry, we may assume
that x /∈ q1. Then since xy ∈ q1 which is p-primary, we have y ∈ p = r(q1) = r(q1 ∩ q2).

Lemma 3. If q is an ideal such that r(q) is maximal, then q is primary.

Proof. See Homework 5, Problem 1.

Lemma 4. Suppose that A is Noetherian and m is maximal. If a is any ideal of A, then a
is m-primary if and only if m ⊇ a ⊇ mn for some n.

Proof. Suppose that a is m-primary. Then r(a) = m so m ⊇ a. To show that a ⊇ mn for
some n let x1, . . . , xr be generators of m. Then xki ∈ a for some k. Now mn is generated
by elements of the form xa11 · · ·xarr where

∑
ai = n. If n > kr this forces some ai > k so

a ⊇ mn.
Conversely, suppose that m ⊇ a ⊇ mn. Then

m = r(m) ⊇ r(a) ⊇ r(mn) = m,

so r(a) = m is maximal and therefore a is m-primary by Lemma 3.

Theorem 5. If A is Noetherian, then every ideal a may be expressed as a finite intersection
of primary ideals.

Proof. Let us define an ideal q to be irreducible if whenever q is written as an intersection
of two ideals, q = b ∩ c either q = b or q = c. For example a maximal ideal is irreducible.

We may write any ideal a as an intersection of irreducible ideals. Indeed, if this is not
so let a be a maximal counterexample. Then a is not irreducible so we may write a = b ∩ c
with b and c strictly larger. But since a is a maximal counter example, both b and c can be
written as intersections of irreducible ideals, and hence so can a. This is a contradiction.

Hence it will be sufficient to show that an irreducible ideal q is primary. Assume that q
is irreducible. Hence in the ring A = A/q, the ideal (0) is irreducible. If we show that (0) is
primary in A, it will follow that q is primary in A. So we may assume that q = 0.

Thus suppose that (0) is an irreducible ideal in A. We will show that xy = 0 implies y = 0
or xn = 0 for some n. Assume that y 6= 0. We consider the ideals an = {z ∈ A|zxn = 0}.
Since

a1 ⊆ a2 ⊆ a3 ⊆ · · ·
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and A is Noetherian, this chain stabilizes and an = an+1 for some n. We will show that
xn = 0.

Let us show that (y) ∩ (xn) = 0. Indeed, if a is in this intersection we may write
a = yz = wxn. Since xy = 0 we have xa = xyz = 0 and so wxn+1 = 0. This means that
w ∈ an+1. Since an+1 = an we see that wxn = 0, that is a = 0.

Now (0) is irreducible and (y)∩ (xn) = 0. Since (y) 6= 0 we have (xn) = 0 proving xn = 0.
We have shown that (0) is primary, as required.

By Lemma 2 we may combine all primary ideals with a given radical, and hence in the
decomposition

a =
n⋂

i=1

qi, qi primary, (1)

we may assume that the r(qi) are distinct. We may also discard any qi if removing it does
not change the intersection, so we may assume qi does not contain

⋂
j 6=i qj. With these

assumptions we call the representation of a in (1) a (reduced) primary decomposition.

Example 6. The primary decomposition may not be unique. For example in the polynomial
ring k[x, y], where k is a field, the ideal a = (x2, xy) has two distinct primary decompositions:

a = (x) ∩ (x2, y) = (x) ∩ (x2, xy, y2).

Both decompositions are primary. Indeed (x) is prime, hence primary, while (x2, y) and
(x2, xy, y2) are primary by Lemma 3 since their radical (x, y) is maximal.

If a is an ideal and x ∈ A let

(a : x) = {y ∈ A|xy ∈ a} .

It is an ideal of A containing a.

Lemma 7. Suppose that q is p-primary. Then

(i) if x ∈ q then (q : x) = A;

(ii) if x /∈ q then r
(
(q : x)

)
= p;

(iii) if x /∈ p then (q : x) = q.

Proof. This is easy and we leave it to the reader.

Although the primary decomposition is not unique, it has some uniqueness properties.
In particular:

Theorem 8. Let a =
⋂

qi be a reduced decomposition into primary ideals. Then the prime
ideals pi = r(qi) are independent of the choice of decomposition.

The pi = r(qi) are called the associated primes of the ideal a, and the theorem shows that
they do not depend on the choice of reduced primary decomposition.
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Proof. We note that

r
(
(a : x)

)
=
⋃
x/∈qi

pi. (2)

Indeed the left-hand side is
⋂

i r
(
(qi : x)

)
so this follows from the Lemma.

Using (2) we may show that the pi are precisely the prime ideals that occur among the
r((a : x)) as x runs through the elements of A. First note that since the decomposition is
reduced, there exists x /∈ qi such that x ∈ qj for all j 6= i. (Otherwise we could omit qi
from the intersection a = ∩qi.) Then r((qi)) = pi by the Lemma. Conversely, suppose that
p := r((a : x)) is prime: we claim that p is one of the pi. Indeed, by (2) p contains the
intersection of some of the pi. We write p =

⋂
i∈S pi. If p is not one of the pi, then for each

i ∈ S we may find x ∈ pi − p and then
∏
xi will be in

⋂
i∈S pi but not in p, which is a

contradiction.
Since we have an intrinsic characterization of the pi independent of the decomposition,

the theorem is proved.

Proposition 9. Let a = q1 ∩ · · · ∩ qn be a primary decomposition, and let pi = r(qi) be the
associated primes. Then any prime ideal p that contains a contains one of the pi.

Proof. First note that p ⊇ qi for some i. Indeed, if not let xi ∈ qi\p for each i. Then
∏
xi is an

element of a =
⋂

qi that is not in p, which is a contradiction. Then p = r(p) ⊇ r(qi) = pi.

This shows that there are a finite number of minimal primes containing a, and that these
are precisely the primes that are minimal among the associated primes pi = r(qi). (Example 6
shows that there may be inclusion relations among the pi, so the minimal associated primes
may not be all of them.) Indeed, the Proposition immediately implies:

Corollary 10. Let a be an ideal in a Noetherian ring. Then there are a finite number of
prime ideals that are minimal among the prime ideals containing a. These are the minimal
r(qi) for a primary decomposition a = q1 ∩ · · · ∩ qn.

This fact has a geometric meaning.

Corollary 11. Let A = O(X) be the affine algebra of affine algebraic variety, and let Y =
V (a) be a Zariski-closed subset, for some ideal a in A. Then Y has a unique decomposition
into a union of maximal closed irreducible subsets Yi = V (pi) where pi are the minimal
associated primes.

Hilbert Polynomial

Let G be a Noetherian graded ring. This means that G is a ring and that we have a
decomposition G =

⊕∞
k=0Gk into additive subgroups Gk such that GkGl ⊆ Gk+l. Thus G0

is a subring and G is an G0-algebra. At first we will assume that G0 = k is a field, and later
relax this assumption. If x ∈ Gi we say x is homogeneous of degree i.
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Let M be a graded G-module. This means M itself has a decomposition M =
⊕∞

k=0Mk

and that GkMl ⊆ Mk+l. We assume that M is finitely-generated. This implies that
dim(Mk) <∞ and we define the Hilbert series to be the formal power series

PM(t) =
∞∑
k=0

dim(Mk)tk.

Theorem 12. Suppose that G is generated as a k-algebra by elements xi that are homoge-
neous of degree di (i = 1, · · · , r). Then

PM(t) =
g(t)

(1− td1) · · · (1− tdr)

where g(t) is a polynomial.

Proof. Let G′ = k[x1, · · · , xr−1]. It too is a graded k-algebra.
Multiplication by xr is a graded G-module endomorphism of M of degree dr; this means

that it maps Mi into Mi+dr . Let K and Q be the kernel and cokernel of this endomorphism.
Then we have an exact sequence

0 −→ Ki −→Mi
xr−→Mi+dr −→ Qi+dr −→ 0.

Since M is Noetherian, K and Q are finitely generated as G-modules. We thus have

dim(Ki)− dim(Mi) + dim(Mi+dr)− dim(Qi+dr) = 0.

Multiplying this identity by ti+dr and summing over i gives

tdrPK(t)− tdrPM(t) + PM(t)− PQ(t) = 0

or

PM(t) =
PQ(t)− tdrPK(t)

1− tdr
.

We wish to apply induction and substitute the Hilbert series for PQ(t) and PK(t). Now
think of G = G′[xr] as a graded ring generated over G′ by one variable xr. Both modules Q
and K are annihilated by xr so the Hilbert series for them is the same whether we compute
it as G-modules or as G′-modules. Thus only factors 1 − td1 , · · · , 1 − tdr−1 appear in their
denominators.

We recall the notion of length of a module. A module M over a ring is simple if it
is nonzero, but has no proper, nonzero submodules. Thus a vector space is simple if it is
one-dimensional. A composition series for a module M has a filtration by submodules:

0 = M0 $M1 $ · · · $M` = M

The Jordan-Hölder theorem asserts that if M has a composition series, then all composition
series have the same length ` = `(M). This is the length of M . The Jordan-Hölder series is
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proved for groups (where there is an analogous assertion) in Lang’s Algebra, Chapter 1. The
proof for modules is omitted in Lang, but it is identical to the group case. If the module has
no composition series we write `(M) =∞.

The length is additive in the sense that if we have a short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

then M has a composition series if and only if both M ′ and M ′′ do, and `(M) = `(M ′) +
`(M ′′).

Now let A be a Noetherian local ring with maximal ideal m. Then mi/mi+1 is a vector
space over k = A/m. Its length as an A-module equals its dimension as a k-vector space.
On the other hand A/mi is not a vector space over k. It is, however an A-module and

`(A/mn) =
n−1∑
k=0

`(mk/mk+1) =
n−1∑
k=0

dim(mk/mk+1). (3)

Theorem 13. Suppose that A is a Noetherian local ring with maximal ideal m. Then there
exists a polynomial χm(n) such that if n is sufficiently large, then `(A/mn) = χm(n). If
r = dim(m/m2) then the degree of χm is 6 r.

The polynomial χm is called the Hilbert-Samuel polynomial.

Proof. Define a graded algebra G = Gm(A) as follows. The homogenous part of degree i is

Gi = mi/mi+1

and the multiplication Gi×Gj −→ Gi+j is induced by the multiplication mi×mj −→ mi+j.
We treat G as a module over itself and consider its Hilbert series. Now G is generated by
its elements of degree 1, and r is the number of generators needed, so the Hilbert series has
the form

∞∑
i=0

dim(mi/mi+1)ti =
f(t)

(1− t)r
= f(t)

∞∑
i=0

(
r + i− 1

i

)
ti.

Now if f(t) =
∑
ait

i then comparing the coefficients of tn we obtain (provided n > deg(f))
the identity

dim(mn/mn+1) =

deg(f)∑
j=0

aj

(
r + n− j − 1

n− j

)
.

Here
(
r+n−j−1

n−j

)
is a polynomial of degree r − 1. Thus there exists a polynomial p of degree

6 r − 1 such that for sufficiently large n we have

dim(mn/mn+1) = p(n).

Using (3) implies that there exists a polynomial χm of degree 6 r such that if n is sufficiently
large, then `(A/mn) = χm(n).
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The Krull Dimension Theorem

We may now define two more invariants of the Noetherian local ring A. First, let d(A) =
deg(χm). Second, let δ(A) be the minimal number of generators required for an m-primary
ideal. We may now state the main theorem of dimension theory.

Theorem 14 (Krull Dimension Theorem). Let A be a Noetherian local ring. Then

dim(A) = δ(A) = d(A)

Proof. To prove this, we will have to prove inequalities

d(A) 6 δ(A), δ(A) 6 dim(A), dim(A) 6 d(A).

Each inequality uses a different technique.

The inequality d(A) 6 δ(A)

It may be true that the degree of the polynomial χm(n) is less than dim(m/m2). For example,
consider the local ring at (0, 0) of the curve y2 = x2(x + 1). Then m/m2 requires two
generators, so r = 2. However if i > 1 then dim(mi/mi+1) is two dimensional, spanned by
xi and xi−1y. Using (3) it follows that χm(n) = 2n− 1, which has degree 1, not 2. Let d(A)
be the degree of the polynomial χm. Eventually we will show that this equals dim(A), and
this statment is part of the Krull dimension theorem.

However we can improve Theorem 13. Note that dim(m/m2) is the number of elements
required to generate m. So we have proved that deg(χm) is 6 the number of elements
required to generate m. This number can be optimized by considering instead of m itself, an
m-primary ideal q.

Theorem 15. Let q be an m-primary ideal, and suppose that q can be generated by r ele-
ments. Then deg(χm) 6 r.

Proof. We may define a graded ring Gq(A) as before. The homogeneous part is Gi = qi/qi+1.
The main difference is that now G0 = A/q is no longer a field, so we will have to replace
dimensions by lengths in the preceding arguments, but the same proof shows that there is a
polynomial pq of degree 6 r such that

`(qn/qn+1) = pq(n) (4)

for sufficiently large n, and we deduce that there exists a polynomial χq such that `(A/qn) =
χq(n). Since r(q) = m and q is finitely generated, we have qk ⊆ m for some k. On the
other hand, every generator of q has degree 1 in the graded ring Gq(A). So again the form
of the Hilbert series is g(t)/(1 − t)r for some polynomial t, leading to (4) and the bound
deg(pq) 6 r − 1. As before this implies that there is a polynomial χq(n) of degree 6 r such
that

`(A/qn) = χq(n)
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for sufficiently large n.
Now since q is m-primary there exists an N such that m ⊇ q ⊇ mN . There

mn ⊇ qn ⊇ mNn

so χm(n) 6 χq(n) 6 χm(Nn). This implies that deg(m) = deg(q) proving that deg(χm) 6
r.

The inequality δ(A) 6 dim(A)

We define the height of a prime ideal p in a ring A to be the length d of the longest possible
chain of prime ideals

p0 $ p1 $ p2 $ · · · $ pd = p.

Thus the Krull dimension of A the maximal height of any prime in A, and if A is local the
Krull dimension is the height of its prime ideal m.

Lemma 16. Suppose that a is an ideal and p1, · · · , pn are prime ideals such that a is not
contained in any pi. Then a is not contained in

⋃
i pi.

Proof. This is clearly true if n = 1. By induction, we suppose it is true for n − 1. Arguing
by contradiction, suppose that a ⊆

⋃
i pi. But for each 1 6 j 6 n, we have a *

⋃
i 6=j pi, so

we take an element xi that is in a but not
⋃

i 6=j pi. Then xi must be in pj since a ⊆
⋃

i pi.
Now consider

x =
n∑

j=1

∏
i6=j

xi.

This is in a so it must be in some pk. We write

x =
∏
i6=k

xi + xk
∑
j 6=k

∏
i 6=j,k

xi.

Since x and xk are in pk we must have
∏

i 6=k
xi ∈ pk. But this is a contradiction since xi /∈ pk

if i 6= k, and pk is prime.

Proposition 17. Let A be a Noetherian local ring with maximal ideal m. Let d = dim(A) =
height(m). Then there exists a sequence x1, · · · , xd ∈ m such that every prime ideal contain-
ing (x1, · · · , xi) has height > i and such that the ideal (x1, · · · , xd) is m-primary.

Proof. Suppose that x1, · · · , xi are constructed with i < d. We will show how to con-
struct xi+1. From Corollary 10 there are only a finite number of minimal primes containing
(x1, · · · , xi). Let S be the set of such minimal primes that have height exactly i. (The set S
may be empty.) Note that if (x1, · · · , xi) ⊆ p and p /∈ S then height(p) > i.

Since i < d and d = height(m), none of the primes in S are m, so by the Lemma, m is not
contained in the union of the primes in S. Therefore we may choose xi+1 ∈ m such that xi+1

is not in any of the primes in S. Now let p be any prime ideal containing (x1, · · · , xi+1). We
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must show that height(p) > i+ 1. The prime p contains one of the primes p′ that is minimal
among those containing x1, · · · , xi. If p′ ∈ S then p % p′ so height(p) > height(p′) = i. On
the other hand, if p′ /∈ S, then height(p) > i also, and so we are done.

We have constructed x1, · · · , xd inductively. Any prime ideal containing all of them has
height d, and since m is the unique ideal of height d, we see that r((x1, · · · , xd)) = m.
Therefore (x1, · · · , xd) is m-primary.

Corollary 18. Let A be a Noetherian local ring with maximal ideal m. Then A has an
m-primary ideal that is generated by r elements, where r 6 dim(A). Hence δ(A) 6 dim(A).

The inequality dim(A) 6 d(A)

We recall the Artin-Rees Lemma.

Proposition 19 (Artin-Rees Lemma). Let A be a Noetherian ring and M a finitely-generated
A-module. Let N be a submodule of M and let a be an ideal of A. Then there exists a constant
r such that

anM ∩N = an−r(arM ∩N)

for all n > r.

Proof. See Lang’s Algebra, Corollary X.5.5 on page 429.

Theorem 20. Let A be a Noetherian local ring with maximal ideal m. Then dim(A) 6 d(A),
where we recall that d(A) is the degree of the polynomial χm such that χm(n) = `(A/mn) for
n large.

Proof. Let p0 $ p1 $ · · · $ pd be a saturated chain of prime ideals such that pd = m, where
d = dim(A). We will show d 6 d(A).

Note that we may replace A by A/p0. Indeed, inside of A/p0 we have a chain of prime
ideals pi/p0, so if we can prove the result with this assumption we will have d 6 d(A/p0) 6
d(A). Thus we may assume that p0 = 0 and that A is an integral domain.

Let 0 6= a ∈ p1. Let a = (a) and let A = A/a. We will denote the image of m in A as m.
Since A has a chain of prime ideals of length dim(A)− 1, we see that dim(A) 6 dim

(
A
)

+ 1.

By induction on dim(A) we may assume that dim
(
A
)
6 d

(
A
)

so it will be sufficient to show

that d
(
A
)
6 d(A)− 1.

By the Artin-Rees Lemma there exists a constant k such that a∩mn = mn−k(a∩mk) for
k > n. We have a surjective homomorphism A/mn −→ A/m

n
and the kernel is

(a + mn)/mn ∼= a/(a ∩mn).

Thus for sufficiently large n

χm(n) = `
(
A/m

n)
= `(A/mn)− `(a/(a ∩mn)) = χm(n)− `(a/(a ∩mn)). (5)
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This proves that there exists a polynomial f(n) such that for sufficiently large n

`(a/(a ∩mn)) = f(n).

We will argue that the polynomials f and χm have the same degree and leading coefficients,
so that when they are subtracted, the leading terms cancel. If this is true we will have prove
that d

(
A
)
< d(A), and we will be done.

By the Artin-Rees Lemma there exists an r such that if n > r then

a ∩mn = mn−r(a ∩mr),

so
f(n) = `(a/mn−r(a ∩mr)).

We have
amr ⊆ a ∩mr ⊆ a

so
amn ⊆ mn−r(a ∩mr) ⊆ mn−ra

so
`(a/mn−ra) 6 `(a/mn−r(a ∩mr)) 6 `(a/mn). (6)

Now the ideal a = (a) is principal so a ∼= A as a module and

`(a/mna) = `(A/mn) = χm(n)

for sufficiently large n. Thus (6) reads

χm(n− r) 6 f(n) 6 χm(n).

Since we know a priori that f(n) is a polynomial, this inequality shows that its degree and
leading coefficient are the same as χm. Writing (5) as

χm(n) = χm(n)− f(n)

it follows that d
(
A
)

= deg (χm) < deg(χm) = d(A), as required.

We have now proved all three inequalities

dim(A) 6 d(A) 6 δ(A) 6 dim(A)

and the Krull dimension theorem is now proved.
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