
Dimension I

Dimension and Combinatorial Dimension

We will discuss some aspects of the theory of dimension in algebraic geometry. This theory
was created mainly by Wolfgang Krull in the 20th century.

Let X be an affine variety over an algebraically closed field k, with coordinate ring A =
O(X). Thus X is required to be irreducible and so A is an integral domain that is reduced
and finitely generated over k. We define the dimension dim(X) to be the transcendence
degree of the field F of fractions of A over k.

Alternatively we may consider chains of closed, nonempty, irreducible subsets of X such
as:

X0 $ X1 $ · · · $ Xd.

The chain is saturated if no further closed irreducible subsets may be inserted to make a
longer chain. Clearly the chain is saturated, X0 must consist of a single point, and Xd

must equal X. The supremum of the lengths d of such chains is called the combinatorial
dimension. Our goal is to show that dim(X) equals the combinatorial dimension.

If A is a commutative ring, the Krull dimension of A is the supremum of the maximal
lengths d of chains of prime ideals:

p0 $ p1 $ · · · $ pd

If the chain is saturated then clearly pd is maximal and furthermore if A is an integral domain
then p0 = 0.

We recall that there is an inclusion reversing bijection between prime ideals of A and
closed subsets of X. Therefore the combinatorial dimension of X is the Krull dimension of
A = O(X). The key step is Proposition 2 below, whose proof showcases typical applications
of both the Noether normalization theorem and the going-down theorem.

Lemma 1. Suppose that R is a unique factorization domain and p a minimal nonzero prime
ideal of R. Then p = (f) is a principal ideal generated by an irreducible element f of R.

Proof. Since p 6= 0 it contains principal ideals (f), and since it is Noetherian let (f) be a
maximal such principal ideal. We claim that f is irreducible. If not, write f = f1f2 where
f1 and f2 are nonunits. Then f1 ∈ p or f2 ∈ p since p is prime. Thus (f) $ (f1) ⊆ p
contradicting the maximality of (f). This proves that f is irreducible. Then (f) is a nonzero
prime ideal contained in p and by the assumed maximality of p we have p = (f).
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Proposition 2. Suppose that X is an irreducible affine variety. Then X has maximal proper
closed irreducible subsets. Suppose that Y is such a maximal proper closed irreducible subset
of X. Then dim(Y ) = dim(X)− 1.

Proof. Since B = O(X) is finitely generated let A = k[x1, · · · , xn]. We order the generators
so that x1, · · · , xd are algebraically independent over k and xd+1, · · · , xd are algebraic over
k(x1, · · · , xd). By definition d = dim(X). By the Noether normalization theorem (Theo-
rem VIII.2.1 in Lang’s Algebra) we may choose the generators xi so that B is integral over
A = k[x1, · · · , xd], which is a polynomial ring. Thus it is A is a unique factorization domain
and if f is any irreducible element then p = (f) is a minimal nonzero prime ideal. By the
Going-Up theorem there is a prime ideal P of B above p. Thus the ideals P % (0) are
above the primes p % (0) of A. We claim that P is a minimal nonzero prime ideal. Indeed, if
P % Q % (0) then by Proposition 3 of our note on the Going Up and Going Down Theorems,
p % Q ∩ A % (0) contradicting the minimality of p.

Let Y be the subvariety inside X corresponding to P. Since its ideal is a minimal nonzero
prime ideal, Y is a maximal proper irreducible closed subset of X.

We have proved that X has maximal proper closed irreducible subset. But we actually
need to know that every maximal proper closed subset is arises this way. Thus if Y is given,
its prime ideal P is a minimal nonzero prime of B, so by Proposition 3 of our note on the
Going Up and Going Down Theorems, p = P ∩ A is a minimal nonzero prime ideal of the
unique factorization domain A, that is p = (f) for some irreducible f ∈ A.

We order x1, · · · , xd so that f involves xd nontrivially. Let x̄i denote the images of xi

in A/(P ∩ A) = A/(f). We note that x̄1, · · · , x̄d−1 are algebraically independent since the
kernel (f) of the projection A −→ A/(f) involves xd nontrivially. On the other hand, f
gives a relation of algebraic dependence of x̄d over x̄1, · · · , x̄d−1. Therefore x̄1, · · · , x̄d−1 are
a transcendency basis of the field of fractions of A/(f). Furthermore B/p is integral over
A/(f) since B is integral over A. Thus x̄1, · · · , x̄d−1 are a transcendency basis of the field of
fractions of B/p = O(Y ), proving that dim(Y ) = d− 1.

Theorem 3. Let X be an affine variety. Then dim(X) equals the combinatorial definition
of X. Indeed every saturated chain of closed irreducible subsets has length exactly d.

Proof. Indeed, let X0 $ X1 $ · · · $ Xd = X be a saturated chain of closed irreducible
subsets. Then dim(Xd−1) = dim(Xd)−1 by Proposition 2. Note that X0 $ X1 $ · · · $ Xd−1

is a saturated chain for Xd−1, so by induction dim(Xd−1) = d−1. Therefore dim(X) = d.

Nonsingular Plane Curves

An (affine) algebraic variety of dimension one is called a curve. From Theorem 3, an affine
variety X is of dimension one if and only if O(X) is of Krull dimension one, that is, if
every nonzero prime ideal is maximal. If furthermore O(X) is integrally closed, then it is
a Dedekind domain. In this section we will study plane curves, that is, curves embedded
in A2.
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We may define a discrete valuation ring to be a principal ideal domain R with a unique
maximal ideal p. Let $ ∈ p be a generator. Then every nonzero element of R may be
uniquely written as $kε where ε ∈ R× and k > 0. If F is the field, we may again write every
element as $kε where ε ∈ R× but now k is allowed to be negative. The map ordp : R −→ Z
that maps $kε to k is called the valuation. The parameter $ is sometimes called a local
parameter or uniformizer .

Proposition 4. ?? Let R be a Noetherian local domain with maximal ideal m. Suppose that
m is principal: m = $R. Then R is a discrete valuation ring.

Proof. Let a be any nonzero ideal of R. We will argue that a = mk for some k. If a = R we
may take k = 0, so assume that a is proper. Then a ⊆ m and so $−1a ⊆ $−1m = R. We
claim that $−1a 6= a. Indeed if $−1a = a then a = $a = ma and since a is finitely generated
a = 0 by Nakayama’s Lemma. This is a contradiction. Thus $−1a is a strictly larger ideal
than a and by induction (since R is Noetherian) $−1a = mk−1 for some integer k.

Since a = mk = ($k) we have proved that every ideal is principal so R is a PID.

Let f be an irreducible polynomial in the polynomial ring k[X, Y ]. Let

C = {(a, b) ∈ A2|f(a, b) = 0}.

This is a plane curve with coordinate ring A = O(C) = k[X, Y ]/(f). If (a, b) is a point of C
we say (a, b) is nonsingular if either

∂f

∂X
(a, b) 6= 0 or

∂f

∂Y
(a, b) 6= 0.

This is a provisional definition, since later we will see that the property of being nonsingular
is intrinsic, and does not depend on the embedding of C into affine space.

Proposition 5. The plane curve C has only finitely many singular points.

Proof. It is not possible for ∂f/∂X and ∂f/∂Y to both be identically zero unless the char-
acteristic of the ground field k is a prime p, and every term in f is a power of p, that
is

f(X, Y ) =
∑
m,n

am,n(XmY n)p.

Since k is algebraically closed, we may find bm,n such that bpm,n = am,n, and then f = fp
1

where
f1(X, Y ) =

∑
m,n

bm,n(XmY n).

This is a contradiction since f is irreducible.
Now by symmetry we may assume that ∂f/∂Y is not identically zero. Since f is irre-

ducible, the polynomials f and ∂f/∂Y are coprime in k[X, Y ], so they can vanish simul-
taneously at only a finite number of points in A2. The singular points must be among
these.
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We will denote by x and y the images of X, Y in A so that f(x, y) = 0.

Proposition 6. Suppose that ∂f
∂Y

(a, b) 6= 0. Let m be the maximal ideal of A consisting of
functions vanishing at (a, b). Then the local ring Am is a discrete valuation ring, and the
maximal ideal mAm of Am is the principal ideal generated by x.

Proof. Replacing f(X, Y ) by f(X − a, Y − b) we may assume that a = b = 0.
It is enough to show that if g ∈ A vanishes at (a, b) then g is a multiple of x in Am.

Indeed, if we know this then m ⊆ xAm and so mAm ⊆ xAm ⊆ mAm proving that mAm is
principal, hence a discrete valuation ring by Proposition ??.

Since g(0, 0) = 0 the one-variable polynomial g(0, Y ) vanishes at Y = 0. Therefore may
write g(0, Y ) = Y g1(Y ) where Y ∈ k[Y ]. Similarly f(0, 0) = 0 so f(0, Y ) = Y f1(Y ). Now
consider the polynomial

f1(Y )g(X, Y )− g1(Y )f(X, Y ).

This vanishes when X = 0 and so it is a multiple of X and we may write

f1(Y )g(X, Y )− g1(Y )f(X, Y ) = Xh(X, Y )

in k[X, Y ]. On substituting x, y for X, Y we obtain f1(y)g(x, y) = xh(x, y).
Since ∂f

∂Y
(0, 0) 6= 0 we have f1(0) 6= 0. Thus f1(y) is invertible in Am and so g(x, y) is a

multiple of x.

Theorem 7. Let C be the plane curve defined by the equation f(X, Y ) = 0. The local ring
of C at any nonsingular point is a discrete valuation ring.

Proof. If ∂f/∂Y 6= 0 at (a, b), this follows from Proposition 6. If ∂f/∂X 6= 0 we interchange
the roles of X and Y .

Suppose on the other hand that (a, b) is a singular point. Changing coordinates so that
(a, b) = (0, 0) the condition that f(0, 0) = ∂f/∂X(0, 0) = ∂f/∂Y (0, 0) = 0 means that the
Taylor expansion of the polynomial f at (0, 0) looks like this:

f(X, Y ) = aX2 + bXY + cY 2 + higher order terms.

Now the local ring is definitely not a discrete valuation ring, for the maximal ideal m is not
principal; it is generated by x and y and neither can be dispensed with.

Conclusion: For a nonsingular point on an affine curve in A2, the local ring is a discrete
valuation ring. The maximal ideal is principal, generated by a singular element. For singular
points, the maximal ideal is not principal and requires at least two generators.
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Nonsingular Points

Let X be an affine variety of dimension d, and let a ∈ X. Let m = ma be the maximal ideal
of all f ∈ A = O(X) such that f(a) = 0. Then A/m is a field, and indeed A/m is isomorphic
to k, since m is the kernel of the homomorphism f 7→ f(a) from A to k.

Note that m/m2 is a vector space over A/m ∼= k. If M = mAm is the maximal ideal of
the local ring it may be identified with M/M2.

Proposition 8. Let A be a Noetherian local ring with maximal ideal m. Let x1, · · · , xd ∈M
be such that their images in M/M2 span this vector space over the field A/M. Then the xi

generate the ideal M.

Proof. Let N be the ideal generated by the xi. Every element of M is congruent modulo M2

to an element of N, so M2 +N = M. This implies that M(M/N) = M/N. By Nakayama’s
Lemma M/N = 0. Therefore N = M.

Applying this to the case at hand, if xi are a basis of the vector space m/m2 over k, then
their images generate the maximal ideal M of AM.

The Zariski tangent space is the dual space (m/m2)∗ as a k-vector space. To see why this
vector space may be identified with the tangent space, imagine that we embed the variety
in affine n space, and let xi be the coordinate function. The tangent vector ∂/∂xi may be
applied to a function f ∈ A near a point a. Thus define

Di(f) =
∂f

∂xi

(a).

This map Di : A −→ k is a derivation satisfying Di(fg) = f(a)Di(g) + g(a)Di(f). Now let
m be the maximal ideal of functions vanishing at a. Then clearly Di(m

2) = 0. So Di induces
a liner functional on m/m2, that is, an element of (m/m2)∗.

We have seen from our examination of curves that the dimension of m/m2 can be equal to
the dimension of X and it can also be greater. We have not yet proved that m/m2 ≥ dim(X)
but at least we have given examples to show that m/m2 may be either equal to or greater
than dim(X).

Definition 9. Let A be a Noetherian local ring with maximal ideal m. If the dimension of
the vector space m/m2 over the field A/m equals the Krull dimension of A then A is called
a regular local ring.

We may now define a point of a variety to be smooth if its local ring is a regular local
ring. For plane curves, this agrees with the definition we gave previously. At least, we proved
in Theorem 7 that the local ring at a nonsingular point is a DVR and therefore is integrally
closed.
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