Dimension 1

Dimension and Combinatorial Dimension

We will discuss some aspects of the theory of dimension in algebraic geometry. This theory
was created mainly by Wolfgang Krull in the 20th century.

Let X be an affine variety over an algebraically closed field k, with coordinate ring A =
O(X). Thus X is required to be irreducible and so A is an integral domain that is reduced
and finitely generated over k. We define the dimension dim(X) to be the transcendence
degree of the field F' of fractions of A over k.

Alternatively we may consider chains of closed, nonempty, irreducible subsets of X such

as:
X CX S C X

The chain is saturated if no further closed irreducible subsets may be inserted to make a
longer chain. Clearly the chain is saturated, Xy must consist of a single point, and Xy
must equal X. The supremum of the lengths d of such chains is called the combinatorial
dimension. Our goal is to show that dim(X) equals the combinatorial dimension.

If A is a commutative ring, the Krull dimension of A is the supremum of the maximal
lengths d of chains of prime ideals:

po;m;---gpd

If the chain is saturated then clearly p, is maximal and furthermore if A is an integral domain
then py = 0.

We recall that there is an inclusion reversing bijection between prime ideals of A and
closed subsets of X. Therefore the combinatorial dimension of X is the Krull dimension of
A = O(X). The key step is Proposition 2 below, whose proof showcases typical applications
of both the Noether normalization theorem and the going-down theorem.

Lemma 1. Suppose that R is a unique factorization domain and p a minimal nonzero prime
ideal of R. Then p = (f) is a principal ideal generated by an irreducible element f of R.

Proof. Since p # 0 it contains principal ideals (f), and since it is Noetherian let (f) be a
maximal such principal ideal. We claim that f is irreducible. If not, write f = f;fo where
fi and f, are nonunits. Then f; € p or f, € p since p is prime. Thus (f) S (f1) € p
contradicting the maximality of (f). This proves that f is irreducible. Then (f) is a nonzero
prime ideal contained in p and by the assumed maximality of p we have p = (f). O]
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Proposition 2. Suppose that X is an irreducible affine variety. Then X has maximal proper
closed irreducible subsets. Suppose that'Y is such a mazximal proper closed irreducible subset
of X. Then dim(Y) = dim(X) — 1.

Proof. Since B = O(X) is finitely generated let A = k[zy,--- ,z,]. We order the generators
so that zq,--- , x4 are algebraically independent over k and 441, --- , 24 are algebraic over
k(xy,--- ,24). By definition d = dim(X). By the Noether normalization theorem (Theo-
rem VIII.2.1 in Lang’s Algebra) we may choose the generators z; so that B is integral over
A = klxy,- -+, 4], which is a polynomial ring. Thus it is A is a unique factorization domain
and if f is any irreducible element then p = (f) is a minimal nonzero prime ideal. By the
Going-Up theorem there is a prime ideal 3 of B above p. Thus the ideals B 2 (0) are
above the primes p 2 (0) of A. We claim that 9 is a minimal nonzero prime ideal. Indeed, if
P 2 Q 2 (0) then by Proposition 3 of our note on the Going Up and Going Down Theorems,
p 2 QN A2 (0) contradicting the minimality of p.

Let Y be the subvariety inside X corresponding to ‘B. Since its ideal is a minimal nonzero
prime ideal, Y is a maximal proper irreducible closed subset of X.

We have proved that X has maximal proper closed irreducible subset. But we actually
need to know that every maximal proper closed subset is arises this way. Thus if Y is given,
its prime ideal 9 is a minimal nonzero prime of B, so by Proposition 3 of our note on the
Going Up and Going Down Theorems, p = P N A is a minimal nonzero prime ideal of the
unique factorization domain A, that is p = (f) for some irreducible f € A.

We order x1,---, x4 so that f involves x4 nontrivially. Let Z; denote the images of x;
in A/(BNA)=A/(f). We note that Z;,--- , T4 are algebraically independent since the
kernel (f) of the projection A — A/(f) involves x; nontrivially. On the other hand, f

gives a relation of algebraic dependence of 4 over Zy, -+ ,Z4_1. Therefore z,,--- , 241 are
a transcendency basis of the field of fractions of A/(f). Furthermore B/p is integral over
A/(f) since B is integral over A. Thus Zy,--- ,Z4_1 are a transcendency basis of the field of
fractions of B/p = O(Y'), proving that dim(Y) =d — 1. O

Theorem 3. Let X be an affine variety. Then dim(X) equals the combinatorial definition
of X. Indeed every saturated chain of closed irreducible subsets has length exactly d.

Proof. Indeed, let Xo & X1 & --- & X4 = X be a saturated chain of closed irreducible
subsets. Then dim(Xy_1) = dim(Xy) —1 by Proposition 2. Note that Xo G X1 G --- & X4
is a saturated chain for X,_4, so by induction dim(X,_1) = d—1. Therefore dim(X) =d. O

Nonsingular Plane Curves

An (affine) algebraic variety of dimension one is called a curve. From Theorem 3, an affine
variety X is of dimension one if and only if O(X) is of Krull dimension one, that is, if
every nonzero prime ideal is maximal. If furthermore O(X) is integrally closed, then it is
a Dedekind domain. In this section we will study plane curves, that is, curves embedded
in A2,



We may define a discrete valuation ring to be a principal ideal domain R with a unique
maximal ideal p. Let w € p be a generator. Then every nonzero element of R may be
uniquely written as ww’e where ¢ € R* and k > 0. If F is the field, we may again write every
element as w”e where £ € R* but now k is allowed to be negative. The map ord, : R — Z
that maps @®e to k is called the valuation. The parameter w is sometimes called a local
parameter or uniformizer.

Proposition 4. ?? Let R be a Noetherian local domain with mazimal ideal m. Suppose that
m is principal: m = wh. Then R is a discrete valuation ring.

Proof. Let a be any nonzero ideal of R. We will argue that a = m”* for some k. If a = R we
may take k = 0, so assume that a is proper. Then a C m and so w 'a C w'm = R. We
claim that @ 'a # a. Indeed if w'a = a then a = wa = ma and since a is finitely generated
a = 0 by Nakayama’s Lemma. This is a contradiction. Thus @ 'a is a strictly larger ideal
than a and by induction (since R is Noetherian) w~'a = m*~! for some integer k.

Since a = m* = (") we have proved that every ideal is principal so R is a PID. ]

Let f be an irreducible polynomial in the polynomial ring k[X,Y]. Let
C = {(a,b) € A*|f(a,b) = 0}.

This is a plane curve with coordinate ring A = O(C) = k[X,Y]/(f). If (a,b) is a point of C
we say (a,b) is nonsingular if either
of of

a—X(a, b) #0 or 8_Y(a’ b) # 0.

This is a provisional definition, since later we will see that the property of being nonsingular
is intrinsic, and does not depend on the embedding of C' into affine space.

Proposition 5. The plane curve C' has only finitely many singular points.

Proof. Tt is not possible for f/0X and 0f/0Y to both be identically zero unless the char-
acteristic of the ground field k is a prime p, and every term in f is a power of p, that
is

FLY) =D ama(XTY)P.

Since k is algebraically closed, we may find by, such that bf, , = Gmn, and then f = f}

where

n

AXY) =) (XY™,
This is a contradiction since f is irreducible.
Now by symmetry we may assume that 0f/JY is not identically zero. Since f is irre-
ducible, the polynomials f and 0f/0Y are coprime in k[X,Y], so they can vanish simul-

taneously at only a finite number of points in A2, The singular points must be among
these. O



We will denote by = and y the images of X,Y in A so that f(x,y) = 0.

Proposition 6. Suppose that %(a,b) # 0. Let m be the mazimal ideal of A consisting of
functions vanishing at (a,b). Then the local ring Ay is a discrete valuation ring, and the
mazimal ideal mAy of An is the principal ideal generated by x.

Proof. Replacing f(X,Y) by f(X —a,Y —b) we may assume that a = b = 0.

It is enough to show that if g € A vanishes at (a,b) then g is a multiple of = in A,,.
Indeed, if we know this then m C xA,, and so mA, C zA, C mA, proving that mA,, is
principal, hence a discrete valuation ring by Proposition ?7.

Since ¢(0,0) = 0 the one-variable polynomial g(0,Y") vanishes at Y = 0. Therefore may
write g(0,Y) = Y¢1(Y) where Y € k[Y]. Similarly £(0,0) = 0so f(0,Y) =Y fi(Y). Now
consider the polynomial

AV)g(X,Y) = (V) F(X,Y),

This vanishes when X = 0 and so it is a multiple of X and we may write
HY)g(X,Y) = (V) f(X,Y) = Xh(X,Y)

in £[X,Y]. On substituting z,y for X, Y we obtain fi(y)g(z,y) = zh(z,y).
Since %(O, 0) # 0 we have f1(0) # 0. Thus fi(y) is invertible in A, and so g(z,y) is a
multiple of x. n

Theorem 7. Let C' be the plane curve defined by the equation f(X,Y) = 0. The local ring
of C at any nonsingular point is a discrete valuation ring.

Proof. If 0f/0Y # 0 at (a,b), this follows from Proposition 6. If 0f/0X # 0 we interchange
the roles of X and Y. O

Suppose on the other hand that (a,b) is a singular point. Changing coordinates so that
(a,b) = (0,0) the condition that f(0,0) = df/0X(0,0) = 0f/0Y (0,0) = 0 means that the
Taylor expansion of the polynomial f at (0,0) looks like this:

f(X,Y) =aX?+bXY + cY? + higher order terms.

Now the local ring is definitely not a discrete valuation ring, for the maximal ideal m is not
principal; it is generated by x and y and neither can be dispensed with.

Conclusion: For a nonsingular point on an affine curve in A2, the local ring is a discrete
valuation ring. The maximal ideal is principal, generated by a singular element. For singular
points, the maximal ideal is not principal and requires at least two generators.



Nonsingular Points

Let X be an affine variety of dimension d, and let a € X. Let m = m, be the maximal ideal
ofall f € A= O(X) such that f(a) =0. Then A/m is a field, and indeed A/m is isomorphic
to k, since m is the kernel of the homomorphism f +— f(a) from A to k.

Note that m/m? is a vector space over A/m = k. If 9 = mA,, is the maximal ideal of
the local ring it may be identified with 9)t/902.

Proposition 8. Let A be a Noetherian local ring with mazximal ideal m. Let x1,--- x4 € M
be such that their images in 9M/IM? span this vector space over the field A/9R. Then the w;
generate the ideal M.

Proof. Let M be the ideal generated by the x;. Every element of 9 is congruent modulo 9t
to an element of 91, so M? + 9 = M. This implies that M(M/N) = M/IN. By Nakayama’s
Lemma 9t/9 = 0. Therefore 9t = M. O

Applying this to the case at hand, if z; are a basis of the vector space m/m? over k, then
their images generate the maximal ideal 90t of Agy.

The Zariski tangent space is the dual space (m/m?)* as a k-vector space. To see why this
vector space may be identified with the tangent space, imagine that we embed the variety
in affine n space, and let x; be the coordinate function. The tangent vector 9/0x; may be
applied to a function f € A near a point a. Thus define

of
9.\ Y-

Di(f) =

D;(f). Now let

This map D; : A — k is a deriwation satistying D;(fg) = f(a)D;(g) + g(a)
= 0. So D, induces

m be the maximal ideal of functions vanishing at a. Then clearly D;(m?)
a liner functional on m/m?, that is, an element of (m/m?)*.

We have seen from our examination of curves that the dimension of m/m? can be equal to
the dimension of X and it can also be greater. We have not yet proved that m/m? > dim(X)
but at least we have given examples to show that m/m? may be either equal to or greater
than dim(X).

Definition 9. Let A be a Noetherian local ring with maximal ideal m. If the dimension of
the vector space m/m? over the field A/m equals the Krull dimension of A then A is called
a regular local ring.

We may now define a point of a variety to be smooth if its local ring is a regular local
ring. For plane curves, this agrees with the definition we gave previously. At least, we proved
in Theorem 7 that the local ring at a nonsingular point is a DVR and therefore is integrally
closed.



